LECTURE 4:

VECTOR GEOMETRY : REPRESENTATION OF LINES

Prof. N. Harnew
University of Oxford
MT 2012

Outline: 4. VECTOR GEOMETRY

4.1 Representation of lines in vector form
4.1.1 From vector to Cartesian form
4.1.2 From Cartesian to vector equation
4.2 Distance from a point to a line
4.2.1 Example
4.3 Minimum distance from a line to a line
4.3.1 Example
4.3.2 Angle between the crossing lines
4.3.3 Finding the coordinate at which lines cross

4.1 Representation of lines in vector form

- A very useful application of vectors lines can be represented in vector form.
- Point A is any fixed position on the line with position vector a. Line direction is defined by vector $\underline{\mathbf{b}}$. Position vector \underline{r} is a general point on the line.
- The equation of the line is then written by:

$$
\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}
$$

where λ takes all values to give all positions on the line.

4.1.1 From vector to Cartesian form

- Equation of line, $\underline{\mathbf{r}}-\underline{\mathbf{a}}=\lambda \underline{\mathbf{b}}$
- Taking components:

$$
\frac{x-a_{x}}{b_{x}}=\frac{y-a_{y}}{b_{y}}=\frac{z-a_{z}}{b_{x}}=\lambda
$$

- From first 2 equations:
$y=x\left(\frac{b_{y}}{b_{x}}\right)+\left(a_{y}-\frac{a_{x} b_{y}}{b_{x}}\right)$
$\equiv y=m x+c \quad$ gets the Cartesian representation.

Alternative vector equation

- $\underline{\mathbf{r}}-\underline{\mathbf{a}}=\lambda \underline{\mathbf{b}}$ cross-product both sides by $\underline{\mathbf{b}} \rightarrow$

$$
(\underline{\mathbf{r}}-\underline{\mathbf{a}}) \times \underline{\mathbf{b}}=\lambda(\underline{\mathbf{b}} \times \underline{\mathbf{b}})
$$

- Hence equation can be re-written

$$
(\underline{\mathbf{r}}-\underline{\mathbf{a}}) \times \underline{\mathbf{b}}=0
$$

4.1.2 From Cartesian to vector equation

Example

- Start from Cartesian equation:
$2 x-4=y+6=3 z+9$
\rightarrow set this $\equiv \lambda$
- Rewrite this as: $\quad x=\frac{4+\lambda}{2}, y=-6+\lambda, z=\frac{-9+\lambda}{3}$
- To get in form $\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}$
- Get point on line by setting $\lambda=0: \quad \underline{\mathbf{a}}=(2,-6,-3)$;
- Get vector along line by inspection : $\underline{\mathbf{b}}=\left(\frac{1}{2}, 1, \frac{1}{3}\right)$ (or alternatively $\underline{\mathbf{b}}=(3,6,2)$)
- $\underline{\mathbf{r}}=(2,-6,-3)+\lambda(3,6,2)$

4.2 Distance from a point to a line

- Line is given by $\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}$
- Define point P which has position vector \mathbf{p}. We want to find the minimum distance of point P to the line.
- Vector ($\underline{\mathbf{p}}-\underline{\mathbf{a}})$ connects A to P
- The minimum distance, d, from P to the line is when angle $A B P$ is a right angle.
- From geometry: $d=|\underline{\mathbf{p}}-\underline{\mathbf{a}}| \sin \theta$
- d is therefore the magnitude of the vector product $(\underline{\mathbf{p}}-\underline{\mathbf{a}}) \times \underline{\mathbf{b}} /|\underline{\mathbf{b}}|$

- \quad Hence $d=|(\underline{\mathbf{p}}-\underline{\mathbf{a}}) \times \underline{\hat{\mathbf{b}}}|$
4.2.1 Example: minimum distance of a point to a line Two points ($1,2,2$) and ($3,0,5$) lie on a line. Find the minimum distance of the point $(-2,3,1)$ to the line.
Solution:
Line given by $\underline{\underline{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}$
- $\underline{\mathbf{a}}=(1,2,2), \underline{\mathbf{b}}=(3-1,0-2,5-2)=(2,-2,3)$
- $\underline{\hat{\mathbf{b}}}=(2,-2,3) / \sqrt{ }\left(2^{2}+2^{2}+3^{2}\right)=(2,-2,3) / \sqrt{ }(17)$
- $\underline{\mathbf{p}}=(-2,3,1)$
- $\underline{p}-\underline{\mathbf{a}}=(-2-1,3-2,1-2)=(-3,1,-1)$

$$
(\underline{\mathbf{p}}-\underline{\mathbf{a}}) \times \underline{\hat{\mathbf{b}}}=1 / \sqrt{ }(17) \times\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \mathbf{j} & \underline{\mathbf{k}} \tag{1}\\
-3 & \overline{1} & -1 \\
2 & -2 & 3
\end{array}\right|
$$

$$
=1 / \sqrt{ }(17) \times(\underline{i}(1 \times 3-1 \times 2)-\underline{j}(-3 \times 3+1 \times 2)+\underline{k}(3 \times 2-1 \times 2))
$$

- Minimum distance $=1 / \sqrt{ }(17) \times|\underline{\mathbf{i}}+7 \underline{\mathbf{j}}+4 \underline{\mathbf{k}}|$
$=\sqrt{ }(1+49+16) / \sqrt{ }(17)=\sqrt{ }(66 / 17)$ QED

4.3 Minimum distance from a line to a line

- Consider 2 lines in 3D

$$
\underline{\mathbf{r}}_{1}=\underline{\mathbf{a}}_{1}+\lambda_{1} \underline{\mathbf{b}}_{1}, \quad \underline{\mathbf{r}}_{2}=\underline{\mathbf{a}}_{2}+\lambda_{2} \underline{\mathbf{b}}_{2}
$$

- The shortest distance is represented by the vector perpendicular to both lines
- The unit vector normal to both lines is: $\quad \underline{\hat{\mathbf{n}}}=\frac{\underline{b}_{1} \times \underline{b}_{2}}{\left|\underline{\underline{b}}_{1} \times \underline{\underline{b}}_{2}\right|}$

- Now let $\underline{\mathbf{r}}_{\mathbf{A}}\left(=\underline{\mathbf{a}}_{\mathbf{1}}+\lambda_{A} \underline{\mathbf{b}}_{1}\right)$ and $\underline{\mathbf{r}}_{\mathbf{B}}\left(=\underline{\mathbf{a}}_{2}+\lambda_{B} \underline{\mathbf{b}}_{2}\right)$ be the vectors to the points on the lines which correspond to the shortest distance.
- Vector of shortest distance is then $|\underline{\mathbf{d}}| \underline{\hat{\mathbf{n}}}=\underline{\mathbf{r}}_{\mathrm{A}}-\underline{\mathbf{r}}_{\mathrm{B}}$
- Dot product both sides with vector $\underline{\hat{n}}$:

$$
|\underline{\mathbf{d}}|=\left(\underline{\mathbf{a}}_{1}+\lambda_{A} \underline{\mathbf{b}}_{1}-\underline{\mathbf{a}}_{2}-\lambda_{B} \underline{\mathbf{b}}_{2}\right) \cdot \frac{\underline{\mathbf{b}}_{1} \times \underline{\mathbf{b}}_{2}}{\left|\underline{\mathbf{b}}_{1} \times \underline{\underline{b}}_{2}\right|}
$$

- But $\underline{b}_{1} \cdot\left(\underline{b}_{1} \times \underline{b}_{2}\right)=\underline{b}_{2} \cdot\left(\underline{b}_{1} \times \underline{b}_{2}\right)=0$

$$
\text { Hence }|\underline{d}|=\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right) \cdot \underline{\hat{n}}=\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right) \cdot \frac{\underline{\mathbf{b}}_{\mathbf{1}} \times \underline{b}_{2}}{\underline{\underline{b}_{1}} \times \underline{b}_{2} \mid}
$$

4.3.1 Example: minimum distance between 2 lines

Consider two lines:

$$
\underline{\mathbf{r}}_{1}=(-3,2,1)+\lambda_{1}(4,2,2) ; \quad \underline{\mathbf{r}}_{2}=(-5,0,5)+\lambda_{2}(3,2,-1)
$$

Calculate the minimum distance between the 2 lines. Solution:

- $\underline{\mathbf{a}}_{1}=(-3,2,1), \underline{\mathbf{b}}_{1}=(4,2,2), \underline{\mathbf{a}}_{2}=(-5,0,5), \underline{\mathbf{b}}_{2}=(3,2,-1)$
- $|\underline{\mathbf{d}}|=\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right) \cdot \underline{\hat{\mathbf{n}}} \rightarrow \quad$ Vector defining line of closest distance $\underline{\mathbf{n}}$

$$
\begin{gather*}
\underline{\mathbf{n}}=\underline{\mathbf{b}}_{1} \times \underline{\mathbf{b}}_{2}=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \mathbf{j} & \underline{\mathbf{k}} \\
4 & 2 & 2 \\
3 & 2 & -1
\end{array}\right| \tag{2}\\
=(\underline{\mathbf{i}}(-2-4)-\underline{\mathbf{j}}(-4-6)+\underline{\mathbf{k}}(8-6))=(-6,10,2)
\end{gather*}
$$

- Hence $\underline{\hat{\mathbf{n}}}=(-6,10,2) / \sqrt{ }\left(6^{2}+10^{2}+2^{2}\right)$
- $\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right)=(-3+5,2-0,1-5)=(2,2,-4)$
- Minimum distance $|\underline{\mathbf{d}}|=\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right) \cdot \underline{\hat{\mathbf{n}}}$
$=((2,2,-4) \cdot(-6,10,2)) / \sqrt{ }(140)=(-12+20-8) / \sqrt{ }(140)=0$
- Therefore in this case the lines intersect each other!

4.3.2 Angle between the crossing lines

- $\underline{\mathbf{b}}_{1} \cdot \underline{\mathbf{b}}_{2}=\left|\underline{\mathbf{b}}_{1}\right|\left|\underline{\mathbf{b}}_{\mathbf{2}}\right| \cos \theta$ $\underline{\mathrm{b}}_{1}=(4,2,2), \quad \underline{\mathrm{b}}_{2}=(3,2,-1)$
- $\cos \theta=\frac{(4,2,2) \cdot(3,2,-1)}{\sqrt{ }\left(4^{2}+2^{2}+2^{2}\right) \sqrt{ }\left(3^{2}+2^{2}+1^{2}\right)}$
$=\frac{12+4-2}{\sqrt{ }(24) \sqrt{ }(14)}$
$=\frac{14}{\sqrt{ }(24) \sqrt{ }(14)}=\sqrt{ }\left(\frac{14}{24}\right)=\sqrt{ }\left(\frac{7}{12}\right)$.

4.3.3 Finding the coordinate at which lines cross
- They cross when $\underline{\mathbf{r}}_{\mathbf{A}}=\underline{\mathbf{r}}_{\mathbf{B}}=\underline{\mathbf{a}}_{\mathbf{1}}+\lambda_{A} \underline{\mathbf{b}}_{\mathbf{1}}=\underline{\mathbf{a}}_{\mathbf{2}}+\lambda_{B} \underline{\mathbf{b}}_{\mathbf{2}}$
- Hence $\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{\mathbf{2}}=\lambda_{B} \underline{\mathbf{b}}_{2}-\lambda_{A} \underline{\mathbf{b}}_{1}$
- Cross product with $\underline{\mathrm{b}}_{1}$

$$
\underline{\mathbf{b}}_{1} \times\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right)=\lambda_{B} \underline{\mathbf{b}}_{1} \times \underline{\mathbf{b}}_{2}
$$

$$
\Rightarrow \quad \underline{\mathbf{b}}_{1} \times\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right)=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \tag{3}\\
4 & 2 & 2 \\
2 & 2 & -4
\end{array}\right|
$$

$=(-8-4,4+16,8-4)=(-12,20,4)=\lambda_{B} \times(-6,10,2)$.
Clearly $\lambda_{B}=2$ by inspection.

- Intersection at $\underline{\mathbf{r}}_{\mathbf{B}}=\underline{\mathbf{a}}_{2}+\lambda_{B} \underline{\mathbf{b}}_{2}$

$$
=(-5,0,5)+2 \times(3,2,-1)=(1,4,3)
$$

