LECTURE 4:

VECTOR GEOMETRY : REPRESENTATION OF LINES

Prof. N. Harnew University of Oxford MT 2012

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

1

Outline: 4. VECTOR GEOMETRY

4.1 Representation of lines in vector form

4.1.1 From vector to Cartesian form4.1.2 From Cartesian to vector equation

4.2 Distance from a point to a line 4.2.1 Example

4.3 Minimum distance from a line to a line

4.3.1 Example4.3.2 Angle between the crossing lines4.3.3 Finding the coordinate at which lines cross

4.1 Representation of lines in vector form

- A very useful application of vectors lines can be represented in vector form.
- Point A is any fixed position on the line with position vector <u>a</u>. Line direction is defined by vector <u>b</u>.
 Position vector <u>r</u> is a general point on the line.
- The equation of the line is then written by:

where λ takes all values to give all positions on the line.

 $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$

<ロ> (四) (四) (日) (日) (日)

4.1.1 From vector to Cartesian form

- Equation of line, $\underline{\mathbf{r}} \underline{\mathbf{a}} = \lambda \underline{\mathbf{b}}$
- Taking components: $\frac{x-a_x}{b_x} = \frac{y-a_y}{b_y} = \frac{z-a_z}{b_x} = \lambda$
- ► From first 2 equations: $y = x(\frac{b_y}{b_x}) + (a_y - \frac{a_x b_y}{b_x})$ $\equiv y = mx + c$ gets the Cartesian representation.

Alternative vector equation

•
$$\underline{\mathbf{r}} - \underline{\mathbf{a}} = \lambda \underline{\mathbf{b}}$$

cross-product both sides by $\underline{\mathbf{b}} \rightarrow (\underline{\mathbf{r}} - \underline{\mathbf{a}}) \times \underline{\mathbf{b}} = \lambda (\underline{\mathbf{b}} \times \underline{\mathbf{b}})$

Hence equation can be re-written

$$(\underline{\mathbf{r}} - \underline{\mathbf{a}}) \times \underline{\mathbf{b}} = \mathbf{0}$$

4.1.2 From Cartesian to vector equation

Example

- ► Start from Cartesian equation: 2x - 4 = y + 6 = 3z + 9 \rightarrow set this $\equiv \lambda$
- Rewrite this as : $x = \frac{4+\lambda}{2}$, $y = -6 + \lambda$, $z = \frac{-9+\lambda}{3}$
- To get in form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$
 - Get point on line by setting $\lambda = 0$: $\underline{a} = (2, -6, -3)$;
 - ► Get vector along line by inspection : <u>b</u> = (¹/₂, 1, ¹/₃) (or alternatively <u>b</u> = (3, 6, 2))

•
$$\underline{\mathbf{r}} = (2, -6, -3) + \lambda(3, 6, 2)$$

4.2 Distance from a point to a line

- Line is given by $\underline{\mathbf{r}} = \underline{\mathbf{a}} + \lambda \underline{\mathbf{b}}$
- Define point P which has position vector <u>p</u>. We want to find the minimum distance of point P to the line.
- Vector $(\underline{\mathbf{p}} \underline{\mathbf{a}})$ connects A to P
- The minimum distance, d, from P to the line is when angle ABP is a right angle.
- From geometry: $d = |\mathbf{p} \underline{\mathbf{a}}| \sin \theta$
- ► d is therefore the magnitude of the vector product (<u>p</u> <u>a</u>) × <u>b</u>/|<u>b</u>|

Hence
$$d = |(\underline{\mathbf{p}} - \underline{\mathbf{a}}) imes \hat{\mathbf{b}}|$$

《口》 《圖》 《臣》 《臣》

4.2.1 Example: minimum distance of a point to a line Two points (1, 2, 2) and (3, 0, 5) lie on a line. Find the minimum distance of the point (-2, 3, 1) to the line. Solution:

Line given by $\underline{\mathbf{r}} = \underline{\mathbf{a}} + \lambda \underline{\mathbf{b}}$

•
$$\underline{\mathbf{a}} = (1,2,2), \ \underline{\mathbf{b}} = (3-1,0-2,5-2) = (2,-2,3)$$

• $\underline{\hat{\mathbf{b}}} = (2,-2,3)/\sqrt{(2^2+2^2+3^2)} = (2,-2,3)/\sqrt{(17)}$
• $\underline{\mathbf{p}} = (-2,3,1)$
• $\underline{\mathbf{p}} - \underline{\mathbf{a}} = (-2-1,3-2,1-2) = (-3,1,-1)$
 $(\underline{\mathbf{p}} - \underline{\mathbf{a}}) \times \underline{\hat{\mathbf{b}}} = 1/\sqrt{(17)} \times \begin{vmatrix} \underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\ -3 & 1 & -1 \\ 2 & -2 & 3 \end{vmatrix}$ (1)
 $= 1/\sqrt{(17)} \times (\underline{\mathbf{i}}(1 \times 3 - 1 \times 2) - \underline{\mathbf{j}}(-3 \times 3 + 1 \times 2) + \underline{\mathbf{k}}(3 \times 2 - 1 \times 2))$

• Minimum distance =
$$1/\sqrt{(17)} \times |\underline{\mathbf{i}} + 7\underline{\mathbf{j}} + 4\underline{\mathbf{k}}|$$

= $\sqrt{(1 + 49 + 16)}/\sqrt{(17)} = \sqrt{(66/17)}$ QED

4.3 Minimum distance from a line to a line

Consider 2 lines in 3D

 $\underline{\mathbf{r}}_{1} = \underline{\mathbf{a}}_{1} + \lambda_{1}\underline{\mathbf{b}}_{1}, \ \underline{\mathbf{r}}_{2} = \underline{\mathbf{a}}_{2} + \lambda_{2}\underline{\mathbf{b}}_{2}$

- The shortest distance is represented by the vector perpendicular to both lines
- The unit vector normal to both lines is: $\underline{\hat{n}} = \frac{\underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2}{|\underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2|}$

- Now let <u>r</u>_A(= <u>a</u>₁ + λ_A<u>b</u>₁) and <u>r</u>_B(= <u>a</u>₂ + λ_B<u>b</u>₂) be the vectors to the points on the lines which correspond to the shortest distance.
- Vector of shortest distance is then $|\underline{d}| \ \underline{\hat{n}} = \underline{r}_A \underline{r}_B$
- Dot product both sides with vector $\underline{\hat{n}}$:

$$|\underline{\mathbf{d}}| = (\underline{\mathbf{a}}_1 + \lambda_A \underline{\mathbf{b}}_1 - \underline{\mathbf{a}}_2 - \lambda_B \underline{\mathbf{b}}_2) \cdot \frac{\underline{\mathbf{b}}_1 \cdot \underline{\mathbf{b}}_2}{|\underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2|}$$

• But
$$\underline{\mathbf{b}}_1.(\underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2) = \underline{\mathbf{b}}_2.(\underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2) = \mathbf{0}$$

Hence
$$|\underline{\mathbf{d}}| = (\underline{\mathbf{a}}_1 - \underline{\mathbf{a}}_2) \cdot \underline{\hat{\mathbf{n}}} = (\underline{\mathbf{a}}_1 - \underline{\mathbf{a}}_2) \cdot \frac{\underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2}{|\underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2|}$$

4.3.1 Example: minimum distance between 2 lines

Consider two lines:

 $\underline{\mathbf{r}}_1 = (-3,2,1) + \lambda_1(4,2,2) ; \quad \underline{\mathbf{r}}_2 = (-5,0,5) + \lambda_2(3,2,-1) \\ \mbox{Calculate the minimum distance between the 2 lines.} \\ \mbox{Solution:}$

 $\bullet \ \underline{\mathbf{a}}_1 = (-3, 2, 1), \ \underline{\mathbf{b}}_1 = (4, 2, 2), \ \underline{\mathbf{a}}_2 = (-5, 0, 5), \ \underline{\mathbf{b}}_2 = (3, 2, -1)$

 $\blacktriangleright \ |\underline{\mathbf{d}}| = (\underline{\mathbf{a}}_1 - \underline{\mathbf{a}}_2) \ . \ \underline{\hat{\mathbf{n}}} \to \ \ \text{Vector defining line of closest distance } \underline{\mathbf{n}}$

$$\underline{\mathbf{n}} = \underline{\mathbf{b}}_{1} \times \underline{\mathbf{b}}_{2} = \begin{vmatrix} \underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\ 4 & \overline{2} & 2 \\ 3 & 2 & -1 \end{vmatrix}$$
(2)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

 $=(\underline{i}(-2-4)-\underline{j}(-4-6)+\underline{k}(8-6))=(-6,10,2)$

- Hence $\underline{\hat{\mathbf{n}}} = (-6, 10, 2)/\sqrt{(6^2 + 10^2 + 2^2)}$
- $(\underline{\mathbf{a}}_1 \underline{\mathbf{a}}_2) = (-3 + 5, 2 0, 1 5) = (2, 2, -4)$
- ► Minimum distance $|\underline{\mathbf{d}}| = (\underline{\mathbf{a}}_1 \underline{\mathbf{a}}_2) \cdot \underline{\hat{\mathbf{n}}}$ = $((2, 2, -4) \cdot (-6, 10, 2)) / \sqrt{(140)} = (-12 + 20 - 8) / \sqrt{(140)} = 0$
- Therefore in this case the lines intersect each other!

4.3.2 Angle between the crossing lines

•
$$\underline{\mathbf{b}}_1 \cdot \underline{\mathbf{b}}_2 = |\underline{\mathbf{b}}_1| |\underline{\mathbf{b}}_2| \cos \theta$$

 $\underline{\mathbf{b}}_1 = (4, 2, 2), \quad \underline{\mathbf{b}}_2 = (3, 2, -1)$
• $\cos \theta = \frac{(4, 2, 2) \cdot (3, 2, -1)}{\sqrt{(4^2 + 2^2 + 2^2)} \sqrt{(3^2 + 2^2 + 1^2)}}$
 $= \frac{12 + 4 - 2}{\sqrt{(24)} \sqrt{(14)}}$
 $= \frac{14}{\sqrt{(24)} \sqrt{(14)}} = \sqrt{(\frac{14}{24})} = \sqrt{(\frac{7}{12})}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

4.3.3 Finding the coordinate at which lines cross

- They cross when $\underline{\mathbf{r}}_{\mathbf{A}} = \underline{\mathbf{r}}_{\mathbf{B}} = \underline{\mathbf{a}}_{1} + \lambda_{\mathcal{A}} \underline{\mathbf{b}}_{1} = \underline{\mathbf{a}}_{2} + \lambda_{\mathcal{B}} \underline{\mathbf{b}}_{2}$
- Hence $\underline{\mathbf{a}}_1 \underline{\mathbf{a}}_2 = \lambda_B \underline{\mathbf{b}}_2 \lambda_A \underline{\mathbf{b}}_1$
- Cross product with $\underline{\mathbf{b}}_1$ $\underline{\mathbf{b}}_1 \times (\underline{\mathbf{a}}_1 - \underline{\mathbf{a}}_2) = \lambda_B \underline{\mathbf{b}}_1 \times \underline{\mathbf{b}}_2$

$$\Rightarrow \underline{\mathbf{b}}_{1} \times (\underline{\mathbf{a}}_{1} - \underline{\mathbf{a}}_{2}) = \begin{vmatrix} \underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\ 4 & \overline{2} & 2 \\ 2 & 2 & -4 \end{vmatrix}$$
(3)

= $(-8 - 4, 4 + 16, 8 - 4) = (-12, 20, 4) = \lambda_B \times (-6, 10, 2)$. Clearly $\lambda_B = 2$ by inspection.

► Intersection at $\underline{\mathbf{r}}_{\mathbf{B}} = \underline{\mathbf{a}}_{\mathbf{2}} + \lambda_{B}\underline{\mathbf{b}}_{\mathbf{2}}$ = (-5,0,5) + 2 × (3,2,-1) = (1,4,3).