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3.1 Dimensional analysis
I A useful method for determining the units of a variable in

an equation
I Useful for checking the correctness of an equation which

you have derived after some algebraic manipulation.
Dimensions need to be correct !

I Determining the form of an equation itself

Most physical quantities can be expressed in terms of
combinations of basic dimensions. These are certainly not
unique :

I mass (M)
I length (L)
I time (T)
I electric charge (Q)
I temperature (θ)

3



Note: The term "dimension" is not quite the same as "unit", but
obviously closely related.

Quantity Unit Dimension

Frequency Hertz (Hz) = (cycles) s−1 T−1

Force Newton (N) = kg m s−2 MLT−2

Energy Joule (J) = N m = kg m2s−2 ML2T−2

Power Watt (W) = J s−1 = kg m2s−3 ML2T−3

Current Ampere (A) = Cs−1 QT−1

EMF Volt (V) = Nm C−1 = kg m2s−2C−1 ML2T−2Q−1

Dimensional analysis is best illustrated with examples.
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3.1.1 The period of a pendulum
How does the period of a pendulum depend on its length?

I Variables: period P, mass m, length l ,
acceleration due to gravity g

I Guess the form: let P = k m a` bg c

(k is a dimensionless constant)

I T 1 = MaLb(LT−2)c = MaLb+cT−2c

I Compare terms:

a = 0, b + c = 0, −2c = 1

→ c = −1/2, b = 1/2

P = k
√

`
g

We know that P = 2π
√

`
g : we obtained this form using dimensions

and without using equation of motion: IMPRESSIVE !
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3.1.2 Kepler’s third law
How does the period of an orbiting mass depend on its radius?

I Variables: period P, central mass M0, orbit
radius r , Gravitational constant G

I Guess the form: let P = k M a
0 r bG c

(k is a dimensionless constant)

I Dimensions of G→ (MLT−2).L2M−2

I T 1 = MaLb(M−1L3T−2)c

= M(a−c)Lb+3cT−2c

I Compare terms:

a− c = 0, b + 3c = 0, −2c = 1

→ a = −1/2, c = −1/2, b = 3/2

P = k M−1/2
0 r3/2G−1/2 → P2 = k2

GM0
r 3

I
GmM0

r2 = mv2

r

I v = 2πr
P

I P2 = 4π2

GM0
r3

→ k2 = 4π2
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3.1.3 The range of a cannon ball
A cannon ball is fired with Vy upwards and Vx horizontally, assume no air resistance.
I Variables: Vx ,Vy , distance travelled along

x (range) R, acceleration due to gravity g

I First with no use of directed length dimensions

I Let R = kV a
x V b

y gc .

(k is a dimensionless constant)
I Dimensionally L = (L/T )a+b(L/T 2)c

I Compare terms:

a + b + c = 1 and a + b + 2c = 0, which leaves one
exponent undetermined.

I Now use directed length dimensions , then Vx will be
dimensioned as Lx/T ,Vy as Ly/T ,R as Lx and g as
Ly/T 2

I The dimensional equation becomes:
Lx = (Lx/T )a (Ly/T )b(Ly/T 2)c

→ a = 1, b = 1 and c = −1.

R = k vx vy
g

I x = vx t

I y = vy t − 1
2 gt2

= 0

→ t = 2vy
g

I x =
2vx vy

g
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3.1.4 Example of limitations of the method

I Let y = f (x1, x2, . . . xn) where x1, x2, . . . xn have
independent dimensions

I However in general y = (xa
1 xb

2 . . . x
n)φ(u1, . . .uk ) where ui

are dimensionless variables

Extend to how the period of a rigid
pendulum depends on length pivot to CM.

I In actual fact P ≡ P(g, `,m, I) where I

is the moment of inertia
I [I] = ML2 → can define u = I

m`2

T =
√

`
g φ(u)

i.e. Equation is not reproduced
T = 2π

√
I

mg`

8



3.2 Newton’s Laws of motion

I NI: Every body continues in a state of rest or in uniform
motion (constant velocity in straight line) unless acted upon
by an external force.

I NII: The rate of change of momentum is equal to the
applied force; where the momentum is defined as the
product of mass and velocity (p = mv). [i.e. the applied
force F on a body is equal to its mass m multiplied by its
acceleration a.]

I NIII: When one body exerts a force on a second body, the
second body simultaneously exerts a force equal in
magnitude and opposite in direction on the first body [i.e.
action and reaction forces are equal in magnitude and
opposite in direction.]
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3.3 Frames of reference

I A frame of reference is an environment which is used to
observe an event or the motion of a particle.

I A coordinate system is associated with the frame to
observe the event (eg the body’s location over time).

I The observer is equipped with measuring tools (eg rulers
and clocks) to measure the positions and times of events.

I In classical mechanics, time intervals between events is
the same in all reference frames (time is absolute).

I In relativity, we will need to use space-time frames.

I A reference frame in which NI is satisfied is called an
inertial reference frame.
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Inertial reference frames
A frame in which Newton’s first law is satisfied:

I Deep space
I The Earth? [Only in circumstances where we can ignore gravity

& the spin of the Earth.]

Principle of Relativity : The laws of Physics are the same in all
inertial frames of reference.

At t = 0, x = 0, x ′ = 0 and S and S′ are coincident.

Galilean Transformation of coordinates:
I x ′ = x − v0t , y ′ = y , z ′ = z, t ′ = t

I Velocity of a body v in S; velocity measured in S′ v ′ = v − v0

I Acceleration measured in S′ a′ = a

I Hence F ′ = F (consistent with the principle of relativity)
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3.4 The Principle of Equivalence

I The Principle of Equivalence dictates that m = m∗.
I Inertial mass = Gravitational mass
I This may seem obvious, but it was not an original postulate

of Newton
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