Classical Mechanics

LECTURE 3:

DIMENSIONAL ANALYSIS \&

NEWTON'S LAWS

Prof. N. Harnew
University of Oxford
MT 2016

OUTLINE : 3. DIMENSIONAL ANALYSIS \& NEWTON'S LAWS

3.1 Dimensional analysis
3.1.1 The period of a pendulum
3.1.2 Kepler's third law
3.1.3 The range of a cannon ball
3.1.4 Example of limitations of the method
3.2 Newton's Laws of motion
3.3 Frames of reference
3.4 The Principle of Equivalence

3.1 Dimensional analysis

- A useful method for determining the units of a variable in an equation
- Useful for checking the correctness of an equation which you have derived after some algebraic manipulation. Dimensions need to be correct !
- Determining the form of an equation itself

Most physical quantities can be expressed in terms of combinations of basic dimensions. These are certainly not unique :

- mass (M)
- length (L)
- time (T)
- electric charge (Q)
- temperature (θ)

Note: The term "dimension" is not quite the same as "unit", but obviously closely related.

Quantity	Unit		Dimension
Frequency	Hertz (Hz)	$=$ (cycles) s^{-1}	T^{-1}
Force	Newton (N)	$=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$	MLT ${ }^{-2}$
Energy	Joule (J)	$=\mathrm{Nm}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$	$M L^{2} T^{-2}$
Power	Watt (W)	$=\mathrm{Js}^{-1}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$	$M L^{2} T^{-3}$
Current	Ampere (A)	$=\mathrm{Cs}^{-1}$	QT ${ }^{-1}$
EMF	Volt (V)	$=\mathrm{NmC}^{-1}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{C}^{-1}$	$\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{Q}^{-1}$

Dimensional analysis is best illustrated with examples.

3.1.1 The period of a pendulum

How does the period of a pendulum depend on its length?

- Variables: period P, mass m, length I, acceleration due to gravity g
- Guess the form: let $P=k m^{a} \ell^{b} g^{c}$ (k is a dimensionless constant)
- $T^{1}=M^{a} L^{b}\left(L T^{-2}\right)^{c}=M^{a} L^{b+c} T^{-2 c}$
- Compare terms:

$$
\begin{aligned}
& a=0, b+c=0,-2 c=1 \\
& \rightarrow c=-1 / 2, b=1 / 2
\end{aligned}
$$

$$
P=k \sqrt{\frac{\ell}{g}}
$$

We know that $P=2 \pi \sqrt{\frac{\ell}{g}}$: we obtained this form using dimensions and without using equation of motion: IMPRESSIVE!

3.1.2 Kepler's third law

How does the period of an orbiting mass depend on its radius?

- Variables: period P, central mass M_{0}, orbit radius r, Gravitational constant G
- Guess the form: let $P=k M_{0}{ }^{a} r^{b} G^{c}$
(k is a dimensionless constant)
- Dimensions of $G \rightarrow\left(M L T^{-2}\right) \cdot L^{2} M^{-2}$
- $T^{1}=M^{a} L^{b}\left(M^{-1} L^{3} T^{-2}\right)^{c}$
$=M^{(a-c)} L^{b+3 c} T^{-2 c}$
- Compare terms:

$$
\begin{aligned}
& a-c=0, b+3 c=0,-2 c=1 \\
& \rightarrow \quad a=-1 / 2, c=-1 / 2, b=3 / 2
\end{aligned}
$$

$P=k M_{0}^{-1 / 2} r^{3 / 2} G^{-1 / 2} \rightarrow \quad P^{2}=\frac{k^{2}}{G M_{0}} r^{3}$

$-\frac{G m M_{0}}{r^{2}}=\frac{m v^{2}}{r}$

- $V=\frac{2 \pi r}{P}$
- $P^{2}=\frac{4 \pi^{2}}{G M_{0}} r^{3}$
$\rightarrow k^{2}=4 \pi^{2}$

3.1.3 The range of a cannon ball

A cannon ball is fired with V_{y} upwards and V_{x} horizontally, assume no air resistance.

- Variables: V_{x}, V_{y}, distance travelled along x (range) R, acceleration due to gravity g
- First with no use of directed length dimensions
- Let $R=k V_{x}^{a} V_{y}^{b} g^{c}$.
(k is a dimensionless constant)
- Dimensionally $L=(L / T)^{a+b}\left(L / T^{2}\right)^{c}$
- Compare terms:
$a+b+c=1$ and $a+b+2 c=0$, which leaves one exponent undetermined.
- Now use directed length dimensions, then V_{x} will be dimensioned as $L_{x} / T, V_{y}$ as $L_{y} / T, R$ as L_{x} and g as L_{y} / T^{2}
- The dimensional equation becomes:
$L_{x}=\left(L_{x} / T\right)^{a}\left(L_{y} / T\right)^{b}\left(L_{y} / T^{2}\right)^{c}$
$\rightarrow a=1, b=1$ and $c=-1$.

- $x=v_{x} t$
- $y=v_{y} t-\frac{1}{2} g t^{2}$

$$
=0
$$

$$
\rightarrow t=\frac{2 v_{y}}{g}
$$

- $x=\frac{2 v_{x} v_{y}}{g}$

$$
R=k \frac{v_{x} v_{y}}{g}
$$

3.1.4 Example of limitations of the method

- Let $y=f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ where $x_{1}, x_{2}, \ldots x_{n}$ have independent dimensions
- However in general $y=\left(x_{1}^{a} x_{2}^{b} \ldots x^{n}\right) \phi\left(u_{1}, \ldots u_{k}\right)$ where u_{i} are dimensionless variables

Extend to how the period of a rigid pendulum depends on length pivot to CM.

- In actual fact $P \equiv P(g, \ell, m, \mathrm{I})$ where I is the moment of inertia
- $[\mathrm{I}]=M L^{2} \rightarrow$ can define $u=\frac{\mathrm{I}}{m \ell^{2}}$

$$
T=\sqrt{\frac{\ell}{g}} \phi(u)
$$

i.e. Equation is not reproduced

3.2 Newton's Laws of motion

- NI: Every body continues in a state of rest or in uniform motion (constant velocity in straight line) unless acted upon by an external force.
- NII: The rate of change of momentum is equal to the applied force; where the momentum is defined as the product of mass and velocity $(\underline{\mathbf{p}}=m \underline{\mathbf{v}})$. [i.e. the applied force F on a body is equal to its mass m multiplied by its acceleration a.]
- NIII: When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body [i.e. action and reaction forces are equal in magnitude and opposite in direction.]

3.3 Frames of reference

- A frame of reference is an environment which is used to observe an event or the motion of a particle.
- A coordinate system is associated with the frame to observe the event (eg the body's location over time).
- The observer is equipped with measuring tools (eg rulers and clocks) to measure the positions and times of events.
- In classical mechanics, time intervals between events is the same in all reference frames (time is absolute).
- In relativity, we will need to use space-time frames.
- A reference frame in which NI is satisfied is called an inertial reference frame.

Inertial reference frames

A frame in which Newton's first law is satisfied:

- Deep space
- The Earth? [Only in circumstances where we can ignore gravity \& the spin of the Earth.]
Principle of Relativity : The laws of Physics are the same in all inertial frames of reference.

At $t=0, x=0, x^{\prime}=0$ and S and S^{\prime} are coincident.
Galilean Transformation of coordinates:

- $x^{\prime}=x-v_{0} t, y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=t$
- Velocity of a body v in S; velocity measured in $S^{\prime} \quad v^{\prime}=v-v_{0}$
- Acceleration measured in $S^{\prime} \quad a^{\prime}=a$
- Hence $F^{\prime}=F$ (consistent with the principle of relativity)

3.4 The Principle of Equivalence

- The Principle of Equivalence dictates that $m=m^{*}$.
- Inertial mass = Gravitational mass
- This may seem obvious, but it was not an original postulate of Newton

