LECTURE 3:
 MORE ON VECTOR PRODUCTS

Prof. N. Harnew
University of Oxford
MT 2012

Outline: 3. VECTOR PRODUCTS AND GEOMETRY

3.1 Scalar Triple Product
3.1.1 Properties of scalar triple product
3.1.2 Geometrical interpretation
3.2 Vector Triple Product
3.2.1 Lagrange's identity
3.3 Generating orthogonal axes

3.1 Scalar Triple Product

- The scalar triple product, $\underline{\mathbf{a}} .(\underline{\mathbf{b}} \times \underline{\mathbf{c}})$, is the scalar product of the vector $\underline{\mathbf{a}}$ with the cross products of vectors $(\underline{\mathbf{b}} \times \underline{\mathbf{c}})$.
- The result is a scalar.
- Scalar triple product is also written [a, $\underline{\mathbf{b}}, \underline{\mathbf{c}}]$.
- Scalar triple product in component form :

$$
\begin{align*}
& \underline{\mathbf{a}} \cdot(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=\underline{\mathbf{a}} \cdot\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right| \tag{1}\\
& =\left(a_{x} \underline{\mathbf{i}}+a_{y} \underline{\mathbf{j}}+a_{z} \underline{\mathbf{k}}\right) \cdot\left(\left(b_{y} c_{z}-b_{z} c_{y}\right) \underline{\mathbf{i}}-\left(b_{x} c_{z}-b_{z} c_{x}\right) \underline{\mathbf{j}}+\left(b_{x} c_{y}-b_{y} c_{x}\right) \underline{\mathbf{k}}\right) \\
& =a_{x}\left(b_{y} c_{z}-b_{z} c_{y}\right)-a_{y}\left(b_{x} c_{z}-b_{z} c_{x}\right)+a_{z}\left(b_{x} c_{y}-b_{y} c_{x}\right) \\
& \text { In matrix (determinant) form : } \underline{\mathbf{a}} \cdot(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right| \tag{2}
\end{align*}
$$

3.1.1 Properties of scalar triple product

- It is obvious that $\underline{\mathbf{a}} \cdot(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=(\underline{\mathbf{b}} \times \underline{\mathbf{c}}) \cdot \underline{\mathbf{a}}$
- Cyclic permutations of $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ and $\underline{\mathbf{c}}$ leaves the triple scalar product unaltered:
$\underline{\mathbf{a}} .(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=\underline{\mathbf{c}} .(\underline{\mathbf{a}} \times \underline{\mathbf{b}})=\underline{\mathbf{b}} .(\underline{\mathbf{c}} \times \underline{\mathbf{a}})$ (easily derived by working in components).
- Non-cyclic permutations change sign:

$$
\begin{aligned}
& {[\underline{\mathbf{a}}, \underline{\mathbf{b}}, \underline{\mathbf{c}}]=[\underline{\mathbf{c}}, \underline{\mathbf{a}}, \underline{\mathbf{b}}]=[\underline{\mathbf{b}}, \underline{\mathbf{c}}, \underline{\mathbf{a}}]=} \\
& -[\underline{\mathbf{a}}, \underline{\mathbf{c}}, \underline{\mathbf{b}}]=-[\underline{\mathbf{c}}, \underline{\mathbf{b}}, \underline{\mathbf{a}}]=-[\underline{\mathbf{b}}, \underline{\mathbf{a}}, \underline{\mathbf{c}}]
\end{aligned}
$$

- The scalar triple product is zero if any two vectors are parallel.
- The scalar triple product is zero if the three vectors are coplanar (lie in the same plane).

3.1.2 Geometrical interpretation

The triple scalar product can be interpreted as the volume of a parallelepiped:

- [Volume] $=$ [Area of base] \times
[Vertical height of parallelepiped]
- [Area of base] $=|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$ (vector direction is perpendicular to the base)

- [Vertical height]
$=|\underline{\mathbf{c}}| \cos \phi=\underline{\mathbf{c}} \cdot\left(\frac{\underline{\mathbf{a}} \times \underline{\mathbf{b}}}{(\underline{\mathbf{a}} \times \underline{\mathbf{b}} \mid}\right)$
- Hence $\quad[$ Volume $]=|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|\left(\underline{\mathbf{c}} \cdot\left(\frac{\mathbf{a} \times \underline{\mathbf{b}}}{(\underline{\mathbf{a}} \times \underline{\mathbf{b}} \mid}\right)\right)=\underline{\mathbf{c}} \cdot(\underline{\mathbf{a}} \times \underline{\mathbf{b}})$
- Obviously if $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ and $\underline{\mathbf{c}}$ are coplanar, volume $=0$.

Example

Calculate the volume of a parallelepiped defined by vectors $(1,1,2),(1,3,2),(-2,1,1)$ from the origin :

- Solution:

$$
\begin{aligned}
& \quad \text { Volume }=\underline{\mathbf{c}} \cdot(\underline{\mathbf{a}} \times \underline{\mathbf{b}})=\left|\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 1 & 2 \\
1 & 3 & 2
\end{array}\right| \\
& =-2(1 \times 2-3 \times 2)-1(2 \times 1-2 \times 1)+1(1 \times 3-1 \times 1) \\
& =8-0+2 \\
& =10
\end{aligned}
$$

3.2 Vector Triple Product

- The vector triple vector product, $\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})$, is the vector product of the vector $\underline{\text { a }}$ with the cross products of vectors $(\underline{\mathbf{b}} \times \underline{\mathbf{c}})$.
- The result is a vector.
- This is not associative. i.e. $\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}}) \neq(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}}$.
- Clearly for $\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})$, the vector lies in the plane of $\underline{\mathbf{b}}$ and \underline{c} and can be expressed in terms of them.

It can be shown:

$$
\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}}) \underline{\mathbf{b}}-(\underline{\mathbf{a}} . \underline{\mathbf{b}}) \underline{\mathbf{c}}
$$

(partial proof, see over ...).

Partial proof (x-component only):

$$
\begin{gather*}
(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right| \tag{4}\\
\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\
a_{x} & a_{z} \\
b_{y} c_{z}-b_{z} c_{y} & -\left(b_{x} c_{z}-b_{z} c_{x}\right) & b_{x} c_{y}-b_{y} c_{x}
\end{array}\right| \tag{5}
\end{gather*}
$$

- x-component only
i: $\quad a_{y}\left(b_{x} c_{y}-b_{y} c_{x}\right)+a_{z}\left(b_{x} c_{z}-b_{z} c_{x}\right)$
$=\left(a_{y} c_{y}+a_{z} c_{z}\right) \cdot b_{x}-\left(a_{y} b_{y}+a_{z} b_{z}\right) \cdot c_{x}+$
$+\left(\left(a_{x} c_{x}\right) b_{x}-\left(a_{x} b_{x}\right) c_{x}\right) \leftarrow$ [note, add this extra term, sum $=0$]
$=\underline{\mathbf{i}}\left((\underline{\mathbf{a}} \cdot \underline{\mathbf{c}}) b_{x}-(\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}) c_{x}\right) \quad$ Similarly for $\underline{\mathbf{j}}$ and $\underline{\mathbf{k}}$ components.
- Also easy to show:

$$
(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}}=(\underline{\mathbf{a}} . \underline{\mathbf{c}}) \underline{\mathbf{b}}-(\underline{\mathbf{b}} . \underline{\mathbf{c}}) \underline{\mathbf{a}} .
$$

- Can also show from above expressions:

$$
\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})+\underline{\mathbf{b}} \times(\underline{\mathbf{c}} \times \underline{\mathbf{a}})+\underline{\mathbf{c}} \times(\underline{\mathbf{a}} \times \underline{\mathbf{b}})=0
$$

3.2.1 Lagrange's identity

Another useful identity (can be proved using components)

$$
(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot(\underline{\mathbf{c}} \times \underline{\mathbf{d}})=(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{d}})-(\underline{\mathbf{a}} \cdot \underline{\mathbf{d}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{c}})
$$

Or alternatively: can be proved using identities of scalar and vector triple products:

- $(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot(\underline{\mathbf{c}} \times \underline{\mathbf{d}})=\underline{\mathbf{d}} \cdot((\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}})=\underline{\mathbf{c}} \cdot(\underline{\mathbf{d}} \times(\underline{\mathbf{a}} \times \underline{\mathbf{b}}))$
(Using properties of scalar triple product)
- $=\underline{\mathbf{c}} \cdot((\underline{\mathbf{d}} \cdot \underline{\mathbf{b}}) \underline{\mathbf{a}}-(\underline{\mathbf{d}} \cdot \underline{\mathbf{a}}) \underline{\mathbf{b}})$
(Using identity of vector product)
- $=(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{d}})-(\underline{\mathbf{a}} \cdot \underline{\mathbf{d}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{c}})$
(Rearranging)

3.3 Generating orthogonal axes

Orthogonal axes can be constructed from cross product of two general vectors

Prescription:

- i) Start from general vectors a and \underline{b},
- ii) Choose vector a as the direction of the x-axis
- iii) The direction of the y-axis is then given by $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$

- iv) The direction of the z-axis is then simply given by $\underline{\mathbf{a}} \times(\underline{\mathbf{a}} \times \underline{\mathbf{b}})$.

