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OUTLINE : 29. FINAL LAGRANGIAN EXAMPLES

29.1 Re-examine the sliding blocks using E-L

29.2 Normal modes of coupled identical springs

29.3 Final example: a rotating coordinate system



29.1 Re-examine the sliding blocks using E-L

A block of mass m slides on a frictionless inclined plane of mass M,
which itself rests on a horizontal frictionless surface. Find the
acceleration of the inclined plane.

Reduce the problem to two
generalized coordinates, x and s

Motion of the inclined plane : y

Tw = SMx?

Motion of the block :

Tm = 3m(X2 + y'?) where X
x' =x+scosa ; y =—ssina |

X' =Xx+S8cosa ; y =-S§sina

> Tm=sm|[(X + §cosa)?+ Fm(5sin a)?]
> T=Tn+ Ty=3(m+ M)x%+ im (5 + 2x5cos a)
» U=—mgssin «
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Sliding blocks, continued
Lagrangian L=T-U
L=3(m+M)x2+ Im (5 + 2x5cos a) + mgssina
2 generalized coordinates — x and s

The E-L equation 2t — & (aqk> 0
E-Lforx: %t =0; ( ) t[(m+M))'(+m'SCOSa]
— (m+M)x+mSCOSa:0 (1)
E-Lfors: 2t = mgsina; & (g—) = 4 [m(5+ xcosa)|
— S+ Xcosa =gsina (2)
Rearranging (1) & (2)

v aCosSa . & _ ~Sina(1+M/m)

=9 s;sr:naj-cl)\fl/m P S=0 G2 at+M/m

From (1)  Mx + m(x + §cos «) = const.
— Mx + mx’ = const. Conservation of momentum.



29.2 Normal modes of coupled identical springs
Coupled identical springs mounted horizontally. x; and x»
measure displacements from the respective equilibrium
positions. Assume the springs are unstretched at equilibrium.

» The problem has two generalized
coordinates, x; and Xz |>

M m
1 (s 1y
T = 3MsE + 3mig MA@V g VAN

—2
o M

U= gkt + Jhods + bk (xe — x1)° X %2
» L=T-U
> E-L equation forxq : §&— & (%) =0

> 5 = —ka H k(e - xi) = ke —2x1) %(M):M}G

0X4 67)(1

— MX1 = k(X2 — 2X1) ; m)"(2 = k(X1 — 2X2)

(e )= (%20 ) (%)



Coupled identical springs, continued

. MX1 _ 2k —k Xq (1)
mj-(g - -k 2k X2
SHM solutions ( X > - ( 2 ) exp(iwt)
X2 a
Substitute into (1)
2 M 0 a 2k —k a
—w - _
0 m ao —k 2k ao
T N———

Putting w? =\ — M‘1K< a >:>\< a )

Eigenvalue equation; homogeneous solutions
Etc etc ....

=



29.3 Final example: a rotating coordinate system
Lagrangian of a free particle :
L=3mi? r=(x,y,z) (with U=0)
Measure the motion w.r.t. a coordinate
system rotating with angular velocity

w = (0,0,w) about the z axis.

r' = (x',y,Z') are coordinates in the
rotating system

x' coswt sinwt 0 X
> y' | =| —sinwt coswt 0 y
z 0 0 1 z
» Take the inverse :
X coswt —sinwt 0 x'
y | =1 sinwt coswt O y
z 0 0 1 z

» Substitute these expressions into the Lagrangian above —
find L in terms of the rotating coordinates
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A rotating coordinate system, continued

> L:%m[()'(/_wy/)2_|_(y/+wxl)2+z/2]
= Im(@’ +w x r')? inthe general case

» In this rotating frame, we can use Lagrange
equations to derive the equations of
motion. Taking derivatives, we have

» L =M xw—wx (wx1)

or’ —

o __ 0 0 0

d (oL i .,
— E( ) dt(r—l—wxr) m(t' +w x 1)

» So the Lagrange equation becomes

9 ()-8 =ml & +wx@xr)+ 2wxi']=0
~~ N—— ~——

radial force  Centrifugal force  Coriolis force



A rotating coordinate system, continued

» Centrifugal and Coriolis forces are
examples of “fictitious forces” :

— called *fictitious” since they are a
consequence of the reference frame,
rather than any interaction. The forces

y

-

» The centrifugal force
Foont = Mw x (w x r’) points outwards
in the plane perpendicular to w with
magnitude mw?|r}| (L is the intended path
projection perpendicular to w )

()]
do not exist in an inertial frame. 6
.

equator

Fcent
X

)
y
R

actual path

» The Coriolis force F,, = 2mw x 1’ acts
in a direction perpendicular to the
rotation axis w and to the velocity of the neneeran

body in the rotating frame
9

actual path



A rotating coordinate system, continued

Coriolis force responsible for the circulation  Aystralia
of oceans and the atmosphere. i

A projectile thrown in the northern
hemisphere rotates in a clockwise direction

A projectile thrown in the southern
hemisphere rotates in an anti-clockwise A
direction. E AN
For a particle moving along the equator,

w L ¥, the Coriolis force tends to zero — Iceland
no effect on the projectile

The Coriolis force is responsible for the
formation of hurricanes. These rotate in
different directions in the northern and
southern hemisphere. They never form
within 500 miles of the equator where the
Coriolis force is too weak.
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THE END
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