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OUTLINE : 29. FINAL LAGRANGIAN EXAMPLES

29.1 Re-examine the sliding blocks using E-L

29.2 Normal modes of coupled identical springs

29.3 Final example: a rotating coordinate system
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29.1 Re-examine the sliding blocks using E-L
A block of mass m slides on a frictionless inclined plane of mass M,
which itself rests on a horizontal frictionless surface. Find the
acceleration of the inclined plane.

I Reduce the problem to two
generalized coordinates, x and s

I Motion of the inclined plane :

TM = 1
2 Mẋ2

I Motion of the block :

Tm = 1
2 m(ẋ ′2 + ẏ ′2) where

I x ′ = x + s cosα ; y ′ = −s sinα
I ẋ ′ = ẋ + ṡ cosα ; ẏ ′ = −ṡ sinα

I Tm = 1
2m
[
(ẋ + ṡ cosα)2 + 1

2m(ṡ sinα)2]
I T = Tm + TM = 1

2(m + M)ẋ2 + 1
2m
(
ṡ2 + 2ẋ ṡ cosα

)
I U = −m g s sin α
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Sliding blocks, continued
I Lagrangian L = T − U
I L = 1

2(m + M)ẋ2 + 1
2m
(
ṡ2 + 2ẋ ṡ cosα

)
+ mgs sinα

I 2 generalized coordinates → x and s

I The E-L equation ∂L
∂qk
− d

dt

(
∂L
∂q̇k

)
= 0

I E-L for x : ∂L
∂x = 0 ; d

dt

(
∂L
∂ẋ

)
= d

dt [(m + M)ẋ + mṡ cosα]

→ (m + M)ẍ + ms̈ cosα = 0 (1)

I E-L for s : ∂L
∂s = mg sinα ; d

dt

(
∂L
∂ṡ

)
= d

dt [m (ṡ + ẋ cosα)]

→ s̈ + ẍ cosα = g sinα (2)
I Rearranging (1) & (2)

ẍ = −g sinα cosα
sin2 α+M/m

; s̈ = g sinα(1+M/m)

sin2 α+M/m

I From (1) Mẋ + m(ẋ + ṡ cosα) = const.
→ Mẋ + mẋ ′ = const. Conservation of momentum.
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29.2 Normal modes of coupled identical springs
Coupled identical springs mounted horizontally. x1 and x2
measure displacements from the respective equilibrium
positions. Assume the springs are unstretched at equilibrium.

I The problem has two generalized
coordinates, x1 and x2

T = 1
2 Mẋ2

1 + 1
2 mẋ2

2

U = 1
2 kx2

1 + 1
2 kx2

2 + 1
2 k (x2 − x1)

2

I L = T − U

I E-L equation for x1 : ∂L
∂x1
− d

dt

(
∂L
∂ẋ1

)
= 0

I ∂L
∂x1

= −kx1 + k(x2 − x1) = k(x2 − 2x1) ; d
dt

(
∂L
∂ẋ1

)
= Mẍ1

→ Mẍ1 = k(x2 − 2x1) ; mẍ2 = k(x1 − 2x2)

I

(
M ẍ1
m ẍ2

)
= −

(
2k −k
−k 2k

)(
x1
x2

)
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Coupled identical springs, continued

I

(
M ẍ1
m ẍ2

)
= −

(
2k −k
−k 2k

)(
x1
x2

)
(1)

I SHM solutions
(

x1
x2

)
=

(
a1
a2

)
exp( i ω t)

I Substitute into (1)

−ω2
(

M 0
0 m

)
︸ ︷︷ ︸

M

(
a1
a2

)
= −

(
2k −k
−k 2k

)
︸ ︷︷ ︸

K

(
a1
a2

)

I Putting ω2 = λ → M−1K

(
a1
a2

)
= λ

(
a1
a2

)
I Eigenvalue equation; homogeneous solutions
I Etc etc ....
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29.3 Final example: a rotating coordinate system
I Lagrangian of a free particle :

L = 1
2mṙ2 , r = (x , y , z) (with U = 0)

I Measure the motion w.r.t. a coordinate
system rotating with angular velocity
ω = (0,0, ω) about the z axis.

I r′ = (x ′, y ′, z ′) are coordinates in the
rotating system

I

 x ′

y ′

z ′

 =

 cosωt sinωt 0
− sinωt cosωt 0

0 0 1

 x
y
z


I Take the inverse : x

y
z

 =

 cosωt − sinωt 0
sinωt cosωt 0

0 0 1

 x ′

y ′

z ′


I Substitute these expressions into the Lagrangian above→

find L in terms of the rotating coordinates
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A rotating coordinate system, continued

I L = 1
2m
[
(ẋ ′ − ω y ′)2 + (ẏ ′ + ω x ′)2 + ż ′2

]
= 1

2m(ṙ′ + ω × r′)2 in the general case
I In this rotating frame, we can use Lagrange

equations to derive the equations of
motion. Taking derivatives, we have

I ∂L
∂r′ = m [ṙ′ × ω − ω × (ω × r′)]

where ∂
∂r′ =

(
∂
∂x ′ ,

∂
∂y ′ ,

∂
∂z′

)
→ d

dt

(
∂L
∂ṙ′

)
= m d

dt (ṙ
′ + ω × r′) = m (r̈′ + ω × ṙ′)

I So the Lagrange equation becomes
d
dt

(
∂L
∂ṙ′

)
− ∂L
∂r′ = m [ r̈′︸︷︷︸

radial force

+ ω × (ω × r′)︸ ︷︷ ︸
Centrifugal force

+ 2ω × ṙ′︸ ︷︷ ︸
Coriolis force

] = 0
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A rotating coordinate system, continued
I Centrifugal and Coriolis forces are

examples of “fictitious forces” :

→ called “fictitious” since they are a
consequence of the reference frame,
rather than any interaction. The forces
do not exist in an inertial frame.

I The centrifugal force
Fcent = mω × (ω × r′) points outwards
in the plane perpendicular to ω with
magnitude mω2|r ′⊥| (⊥ is the
projection perpendicular to ω )

I The Coriolis force Fcor = 2mω × ṙ′ acts
in a direction perpendicular to the
rotation axis ω and to the velocity of the
body in the rotating frame
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A rotating coordinate system, continued

I Coriolis force responsible for the circulation
of oceans and the atmosphere.

I A projectile thrown in the northern
hemisphere rotates in a clockwise direction

I A projectile thrown in the southern
hemisphere rotates in an anti-clockwise
direction.

I For a particle moving along the equator,
ω ⊥ ṙ′ , the Coriolis force tends to zero→
no effect on the projectile

I The Coriolis force is responsible for the
formation of hurricanes. These rotate in
different directions in the northern and
southern hemisphere. They never form
within 500 miles of the equator where the
Coriolis force is too weak.

Australia

Iceland
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THE END
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