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28.1 Hamilton mechanics

Lagrangian mechanics : Allows us to find the equations of
motion for a system in terms of an arbitrary set of
generalized coordinates

Now extend the method due to Hamilton

— use of the conjugate (generalized) momenta

p1,p2,- -, pp replace the generalized velocities
1,82, ,qn

This has advantages when some of conjugate momenta
are constants of the motion and it is well suited to finding
conserved quantities

From before, conjugate momentum : py = aaqu
and E-L equation reads for coordinate k : px = (%k
(since E-Lis px = (55) = 57 )



The Hamiltonian, continued

. partial differentiation:
oL 4y (iL% LLM)
dt k \ dgx dt oqx dt » If f= f(X 2 )
S e A - G- %8S
» Conjugate momentum definition : py = a%k , Pk = %k

> Therefore % = 95+ 3, (PG + PrGk)
————

2 (Pkk)
d SN oL aH _ oL
> S(L=) pkak) =5 o = oL
—_———
-H

» Define Hamiltonian ~H =), pxqx — L
» If L does not depend explicitly on time, H is a constant of motion



28.2 The physical significance of the Hamiltonian

>

>

| 4

From before : H=>", pxqx — L

oL
0qk

Where conjugate momentum : p, = %k , Pk =
Take kinetic energy T = Im (k% + y2 + 2°)
L=71m(x?+y%+22) - U(x,y,2)
H=>,pxqx— L= ;m(zx.x+2y.y+zz.z) —(T-U)
=2T—(T-U)=T+U=E — total energy

From before 9 = 4t

— If L does not depend explicitly on time % =0

— energy is a constant of the motion
Can show by differentiation :
Hamilton Equations — &8 = gy ; §L = —px

If a coordinate does not appear in the Hamiltonian it is
cyclic or ignorable



28.3 Example: re-visit bead on rotating hoop
First take the case of a free (undriven) system w i,
» L=Im(R?6?+ R?sin®0 ¢?) + mgRcosf

> H=3pklk —L i pc= 5
> py =% = mR20 ; ps = mR?sin®0 ¢
» H=mR202 + mR?sin?0 42 — L « 10
—1m (R292 + R2sin? 9 gbz) —mgRcos §

S H=T+U=E

L does not depend explicitly on t,
H, E conserved — Hamiltonian gives the total energy

Hamilton Equations : gx = Bpk Pk = *37’;

— .p¢ = aqs =0 (ignorable)
= py=mAR? sin? 0 ¢ = J; = constant of the motion



Example continued p

Now consider a DRIVEN system - hoop
rotating at constant angular speed w

L= tm(R? 62+ RPw?sin®0) + mgR cos

v

> H=2pkak— L : pc= 55
> pp =95 = m R26 ; a single coordinate ¢ x 19
» H=mR?0?> — L
=Im <R292 — R2w?sin? 0) —mgRcos 6
aH _ oL
> E=1m(R? 02 + RPw?sin? 0) — mgRcos 0 Td T ot
B 5 o . 2 »H is a constant
Hence E = H + mR<w* sin“ 6 of the motion,
- E(=T+U)#H E is not const.

So what'’s different ?
In this case the hoop has been forced to rotate at an angular

velocity w. External energy is being supplied to the system.
7



28.4 Noether’s theorem

The theorem states : Whenever there is a continuous symmetry of
the Lagrangian, there is an associated conservation law.

» Symmetry means a transformation of the generalized
coordinates gk and gk that leaves the value of the Lagrangian
unchanged.

» If a Lagrangian does not depend on a coordinate g (ie. is cyclic)
it is invariant (symmetric) under changes qx — qx + 0qx ; the
corresponding generalized momentum py = (%k is conserved

1. For a Lagrangian that is symmetric under changes t — t + 4,
the total energy H is conserved — H=3", %q —L

2. For a Lagrangian that is symmetric under changes r — r + ér,
the linear momentum p is conserved

3. For a Lagrangian that is symmetric under small rotations of
angle 8 — 6 + 66 about an axis i such a rotation transforms the
Cartesian coordinates by r — r + d6 1 x r , the conserved
quantity is the component of the angular momentum J along the
f axis
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