## Classical Mechanics

 LECTURE 28: HAMILTONIAN MECHANICS,
# NOETHER'S THEOREM 

Prof. N. Harnew
University of Oxford
HT 2017

# OUTLINE : 28. HAMILTONIAN MECHANICS, NOETHER'S THEOREM 

28.1 Hamilton mechanics
28.2 The physical significance of the Hamiltonian
28.3 Example: re-visit bead on rotating hoop
28.4 Noether's theorem

### 28.1 Hamilton mechanics

- Lagrangian mechanics: Allows us to find the equations of motion for a system in terms of an arbitrary set of generalized coordinates
- Now extend the method due to Hamilton $\rightarrow$ use of the conjugate (generalized) momenta $p_{1}, p_{2}, \cdots, p_{n}$ replace the generalized velocities $\dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}$
- This has advantages when some of conjugate momenta are constants of the motion and it is well suited to finding conserved quantities
- From before, conjugate momentum : $p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}$ and $E-L$ equation reads for coordinate $k: \dot{p}_{k}=\frac{\partial L}{\partial q_{k}}$ (since E-L is $\dot{p}_{k}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right)=\frac{\partial L}{\partial q_{k}}$ )


## The Hamiltonian, continued

- Lagrangian $L=L\left(q_{k}, \dot{q}_{k}, t\right)$
- $\frac{d L}{d t}=\frac{\partial L}{\partial t}+\sum_{k}\left(\frac{\partial L}{\partial q_{k}} \frac{d q_{k}}{d t}+\frac{\partial L}{\partial \dot{q}_{k}} \frac{d \dot{q}_{k}}{d t}\right)$
$=\frac{\partial L}{\partial t}+\sum_{k}\left(\frac{\partial L}{\partial q_{k}} \dot{q}_{k}+\frac{\partial L}{\partial \dot{q}_{k}} \ddot{q}_{k}\right)$
- An aside: use rules of partial differentiation:
- If $f=f(x, y, z)$
- $\frac{d f}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial z} \frac{d z}{d x}$
- Conjugate momentum definition : $p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}, \dot{p}_{k}=\frac{\partial L}{\partial q_{k}}$
- Therefore $\frac{d L}{d t}=\frac{\partial L}{\partial t}+\sum_{k}(\underbrace{\dot{q}_{k}+p_{k} \ddot{q}_{k}}_{\frac{d}{d t}\left(p_{k} \dot{p}_{k}\right)})$
- $\frac{d}{d t}(\underbrace{L-\sum_{k} p_{k} \dot{q}_{k}}_{-H})=\frac{\partial L}{\partial t} \quad \frac{d H}{d t}=-\frac{\partial L}{\partial t}$
- Define Hamiltonian

$$
H=\sum_{k} p_{k} \dot{q}_{k}-L
$$

- If $L$ does not depend explicitly on time, $H$ is a constant of motion
28.2 The physical significance of the Hamiltonian
- From before : $H=\sum_{k} p_{k} \dot{q}_{k}-L$
- Where conjugate momentum : $p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}, \dot{p}_{k}=\frac{\partial L}{\partial q_{k}}$
- Take kinetic energy $T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)$
- $L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-U(x, y, z)$
- $H=\sum_{k} p_{k} \dot{q}_{k}-L=\frac{1}{2} m(2 \dot{x} . \dot{x}+2 \dot{y} . \dot{y}+2 \dot{z} . \dot{z})-(T-U)$

$$
=2 T-(T-U)=T+U=E \quad \rightarrow \text { total energy }
$$

- From before $\frac{d H}{d t}=-\frac{\partial L}{\partial t}$
$\rightarrow$ If $L$ does not depend explicitly on time $\frac{d H}{d t}=0$
$\rightarrow$ energy is a constant of the motion
- Can show by differentiation :

Hamilton Equations $\rightarrow \frac{\partial H}{\partial p_{k}}=\dot{q}_{k} ; \frac{\partial H}{\partial q_{k}}=-\dot{p}_{k}$
If a coordinate does not appear in the Hamiltonian it is cyclic or ignorable

### 28.3 Example: re-visit bead on rotating hoop

First take the case of a free (undriven) system

- $L=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)+m g R \cos \theta$
- $H=\sum_{k} p_{k} \dot{q}_{k}-L ; p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}$
- $p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m R^{2} \dot{\theta} ; p_{\phi}=m R^{2} \sin ^{2} \theta \dot{\phi}$
- $H=m R^{2} \dot{\theta}^{2}+m R^{2} \sin ^{2} \theta \dot{\phi}^{2}-L$

$$
\begin{aligned}
= & \frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-m g R \cos \theta \\
& \rightarrow H=T+U=E
\end{aligned}
$$


$L$ does not depend explicitly on $t$, $H, E$ conserved $\rightarrow$ Hamiltonian gives the total energy Hamilton Equations : $\dot{q}_{k}=\frac{\partial H}{\partial p_{k}} ; \dot{p}_{k}=-\frac{\partial H}{\partial q_{k}}$

$$
\rightarrow \dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0 \quad \text { (ignorable) }
$$

$\rightarrow p_{\phi}=m R^{2} \sin ^{2} \theta \dot{\phi}=J_{z}=$ constant of the motion

## Example continued

Now consider a DRIVEN system - hoop rotating at constant angular speed $\omega$

- $L=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \omega^{2} \sin ^{2} \theta\right)+m g R \cos \theta$
- $H=\sum_{k} p_{k} \dot{q}_{k}-L ; p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}$
- $p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m R^{2} \dot{\theta}$; a single coordinate $\theta$
- $H=m R^{2} \dot{\theta}^{2}-L$
$=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}-R^{2} \omega^{2} \sin ^{2} \theta\right)-m g R \cos \theta$
- $E=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \omega^{2} \sin ^{2} \theta\right)-m g R \cos \theta$ Hence $E=H+m R^{2} \omega^{2} \sin ^{2} \theta$

$$
\rightarrow E(=T+U) \neq H
$$


$-\frac{d H}{d t}=-\frac{\partial L}{\partial t}$
$\rightarrow H$ is a constant of the motion, $E$ is not const.
So what's different?
In this case the hoop has been forced to rotate at an angular velocity $\omega$. External energy is being supplied to the system.

### 28.4 Noether's theorem

The theorem states: Whenever there is a continuous symmetry of the Lagrangian, there is an associated conservation law.

- Symmetry means a transformation of the generalized coordinates $q_{k}$ and $\dot{q}_{k}$ that leaves the value of the Lagrangian unchanged.
- If a Lagrangian does not depend on a coordinate $q_{k}$ (ie. is cyclic) it is invariant (symmetric) under changes $q_{k} \rightarrow q_{k}+\delta q_{k}$; the corresponding generalized momentum $p_{k}=\frac{\partial L}{\partial q_{k}}$ is conserved

1. For a Lagrangian that is symmetric under changes $t \rightarrow t+\delta t$, the total energy $H$ is conserved $\rightarrow H=\sum_{k} \frac{\partial L}{\partial \dot{\mathbf{q}}} \dot{\mathbf{q}}-L$
2. For a Lagrangian that is symmetric under changes $r \rightarrow r+\delta r$, the linear momentum $\mathbf{p}$ is conserved
3. For a Lagrangian that is symmetric under small rotations of angle $\theta \rightarrow \theta+\delta \theta$ about an axis $\underline{\hat{n}}$ such a rotation transforms the Cartesian coordinates by $\underline{\mathbf{r}} \rightarrow \underline{\mathbf{r}}+\delta \theta \underline{\hat{\mathbf{n}}} \times \underline{\mathbf{r}}$, the conserved quantity is the component of the angular momentum $\underline{\mathbf{J}}$ along the $\underline{\hat{n}}$ axis
