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28.1 Hamilton mechanics

I Lagrangian mechanics : Allows us to find the equations of
motion for a system in terms of an arbitrary set of
generalized coordinates

I Now extend the method due to Hamilton
→ use of the conjugate (generalized) momenta
p1,p2, · · · ,pn replace the generalized velocities
q̇1, q̇2, · · · , q̇n

I This has advantages when some of conjugate momenta
are constants of the motion and it is well suited to finding
conserved quantities

I From before, conjugate momentum : pk = ∂L
∂q̇k

and E-L equation reads for coordinate k : ṗk = ∂L
∂qk

(since E-L is ṗk = d
dt (

∂L
∂q̇k

) = ∂L
∂qk

)
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The Hamiltonian, continued

I Lagrangian L = L(qk , q̇k , t) =⇒

I dL
dt = ∂L

∂t +
∑

k

(
∂L
∂qk

dqk
dt + ∂L

∂q̇k

dq̇k
dt

)
= ∂L

∂t +
∑

k (
∂L
∂qk

q̇k + ∂L
∂q̇k

q̈k )

I An aside: use rules of
partial differentiation:

I If f = f (x , y , z)

I df
dx = ∂f

∂x + ∂f
∂y

dy
dx + ∂f

∂z
dz
dx

I Conjugate momentum definition : pk = ∂L
∂q̇k

, ṗk = ∂L
∂qk

I Therefore dL
dt = ∂L

∂t +
∑

k (ṗk q̇k + pk q̈k︸ ︷︷ ︸
d
dt (pk q̇k )

)

I d
dt (L−

∑
k

pk q̇k︸ ︷︷ ︸
- H

) = ∂L
∂t

dH
dt = −∂L

∂t

I Define Hamiltonian H =
∑

k pk q̇k − L
I If L does not depend explicitly on time, H is a constant of motion

4



28.2 The physical significance of the Hamiltonian
I From before : H =

∑
k pk q̇k − L

I Where conjugate momentum : pk = ∂L
∂q̇k

, ṗk = ∂L
∂qk

I Take kinetic energy T = 1
2m
(
ẋ2 + ẏ2 + ż2)

I L = 1
2m
(
ẋ2 + ẏ2 + ż2)− U(x , y , z)

I H =
∑

k pk q̇k − L = 1
2m (2ẋ .ẋ + 2ẏ .ẏ + 2ż.ż)− (T − U)

= 2T − (T − U) = T + U = E → total energy

I From before dH
dt = −∂L

∂t

→ If L does not depend explicitly on time dH
dt = 0

→ energy is a constant of the motion

I Can show by differentiation :
Hamilton Equations → ∂H

∂pk
= q̇k ; ∂H

∂qk
= −ṗk

If a coordinate does not appear in the Hamiltonian it is
cyclic or ignorable
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28.3 Example: re-visit bead on rotating hoop
First take the case of a free (undriven) system

I L = 1
2 m (R2 θ̇2 + R2 sin2 θ φ̇2) + mgR cos θ

I H =
∑

k pk q̇k − L ; pk = ∂L
∂q̇k

I pθ = ∂L
∂θ̇

= m R2θ̇ ; pφ = mR2 sin2 θ φ̇

I H = m R2θ̇2 + mR2 sin2 θ φ̇2 − L

= 1
2m
(

R2θ̇2 + R2 sin2 θ φ̇2
)
−mgR cos θ

→ H = T + U = E

L does not depend explicitly on t ,
H,E conserved→ Hamiltonian gives the total energy

Hamilton Equations : q̇k = ∂H
∂pk

; ṗk = − ∂H
∂qk

→ ṗφ = −∂H
∂φ = 0 (ignorable)

→ pφ = mR2 sin2 θ φ̇ = Jz = constant of the motion
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Example continued

Now consider a DRIVEN system - hoop
rotating at constant angular speed ω

I L = 1
2 m (R2 θ̇2 + R2ω2 sin2 θ) + mgR cos θ

I H =
∑

k pk q̇k − L ; pk = ∂L
∂q̇k

I pθ = ∂L
∂θ̇

= m R2θ̇ ; a single coordinate θ

I H = m R2θ̇2 − L

= 1
2m
(

R2θ̇2 − R2ω2 sin2 θ
)
−mgR cos θ

I E = 1
2 m (R2 θ̇2 + R2ω2 sin2 θ)−mgR cos θ

Hence E = H + mR2ω2 sin2 θ

→ E (= T + U) 6= H
So what’s different ?

IdH
dt = −∂L

∂t
IH is a constant

of the motion,
E is not const.

In this case the hoop has been forced to rotate at an angular
velocity ω. External energy is being supplied to the system.
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28.4 Noether’s theorem
The theorem states : Whenever there is a continuous symmetry of
the Lagrangian, there is an associated conservation law.

I Symmetry means a transformation of the generalized
coordinates qk and q̇k that leaves the value of the Lagrangian
unchanged.

I If a Lagrangian does not depend on a coordinate qk (ie. is cyclic)
it is invariant (symmetric) under changes qk → qk + δqk ; the
corresponding generalized momentum pk = ∂L

∂q̇k
is conserved

1. For a Lagrangian that is symmetric under changes t → t + δt ,
the total energy H is conserved→ H =

∑
k

∂L
∂q̇ q̇− L

2. For a Lagrangian that is symmetric under changes r → r + δr ,
the linear momentum p is conserved

3. For a Lagrangian that is symmetric under small rotations of
angle θ → θ + δθ about an axis n̂ such a rotation transforms the
Cartesian coordinates by r→ r+ δθ n̂× r , the conserved
quantity is the component of the angular momentum J along the
n̂ axis
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