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26.1 Conjugate momentum and cyclic coordinates

I The E-L equation is d
dt

(
∂L
∂q̇k

)
= ∂L

∂qk
with L = T − U

I Define conjugate (generalized) momentum : pk = ∂L
∂q̇k

Note this is not necessarily linear momentum !

→ eg. simple pendulum L = 1
2m`2θ̇2 + mg` cos θ

→ ∂L
∂θ̇

= m`2θ̇ : which is angular momentum

I Following on, E-L equation reads ṗk = ∂L
∂qk

I If the Lagrangian L does not explicitly depend on qk , the
coordinate qk is called cyclic or ignorable

I With no qk dependence :
∂L
∂qk

= 0 and pk = ∂L
∂q̇k

= constant

The momentum conjugate to a cyclic coordinate is
a constant of motion
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26.2 Example : rotating bead
A bead slides on a wire rotating at constant angular speed ω in
a horizontal plane

I Polar coordinates v = ṙ r̂+ r θ̇θ̂
I L = T − U with U = 0
I L = 1

2mṙ2 + 1
2mr2ω2

I Single variable qk → r

I E-L d
dt

(
∂L
∂ ṙ

)
= ∂L

∂ ṙ

∂L
∂ ṙ = mṙ → d

dt

(
∂L
∂ ṙ

)
= mr̈

∂L
∂r = mrω2

I E-L→ mr̈ −mrω2 = 0

Central force Fcentral = mω2r
I r = Aeωt + Be−ωt
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Example : rotating bead continued

What happens if the angular speed is now a free coordinate ?

I L = 1
2mṙ2 + 1

2mr2θ̇2

I Two variables qk → r , θ
I r variable: as before

→ mr̈ −mr θ̇2 = 0
I θ variable: d

dt

(
∂L
∂θ̇

)
= ∂L

∂θ

I ∂L
∂θ̇

= mr2θ̇

I ∂L
∂θ = 0

I E-L : mr2θ̈ = d
dt

(
mr2θ̇

)
= 0

→ Conservation of angular
momentum
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26.3 Example : simple pendulum
Evaluate simple pendulum using Euler-Lagrange equation

I Single variable qk → θ

I v = ` θ̇

I T = 1
2m`2θ̇2

I U = −mg` cos θ
I L = T − U = 1

2m`2θ̇2 + mg` cos θ

I ∂L
∂θ̇

= m`2θ̇ → d
dt

(
∂L
∂θ̇

)
= m`2θ̈

I ∂L
∂θ = −mg` sin θ

I E-L→ m`2θ̈ + mg` sin θ = 0

→ θ̈ + g
` sin θ = 0

This is great, but note that the method
does not get the tension in the string
since ` is a constraint (see next slide).6



26.3.1 Dealing with forces of constraint
For the simple pendulum using Euler-Lagrange equation. The
method did not get the tension in the string since ` was constrained.
If we need to find the string tension, we need to include the radial
term into the Lagrangian and to include a potential function to
represent the tension:

I `→ r , add 1
2 mṙ2 , add V (r)

I L = 1
2 mṙ2 + 1

2 mr2θ̇2 + mgr cos θ − V (r)

I ∂L
∂ ṙ = mṙ → d

dt

(
∂L
∂ ṙ

)
= mr̈

I ∂L
∂r = mr θ̇2 + mg cos θ − ∂V (r)

∂r

I −∂V (r)
∂r = (−T ) with T in the −r̂ dirn.

I E-L→ mr̈ = mr θ̇2 + mg cos θ − T
I Reintroduce r̈ = 0 and r = `; v = r θ̇

mv2

r︸ ︷︷ ︸
Centripetal force

= T︸︷︷︸
Tension

−mg cos θ︸ ︷︷ ︸
Weight

as expected from NII
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26.3.2 The Lagrange multiplier method
An alternative method of dealing with constraints.
Back to the simple pendulum using Euler-Lagrange equation · · ·
Before : single variable qk → θ. This time take TWO variables x , y but
introduce a constraint into the equation. L = T − U

I L′ = 1
2m(ẋ2+ẏ2)+mgy+ 1

2λ(x
2+y2−`2)

λ is the Lagrange multiplier

I d
dt

(
∂L′

∂q̇i

)
= ∂L′

∂qi
(including λ)

x coord. → mẍ = λx (1)

y coord. → mÿ = mg + λy (2)

λ coord. → x2 + y2 − `2 = 0 (3)

(which reproduces the constraint)

Comparing with Newton II : mẍ = −Tx
` ; mÿ = mg − Ty

` .
We see from the NII approach the Lagrange multiplier λ is
proportional to the string tension λ = −T

` and introduces force
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