Classical Mechanics LECTURE 26: THE LAGRANGE EQUATION EXAMPLES

Prof. N. Harnew University of Oxford HT 2017

1

OUTLINE : 26. THE LAGRANGE EQUATION : EXAMPLES

26.1 Conjugate momentum and cyclic coordinates

26.2 Example : rotating bead

26.3 Example : simple pendulum 26.3.1 Dealing with forces of constraint 26.3.2 The Lagrange multiplier method

26.1 Conjugate momentum and cyclic coordinates

- ▶ The E-L equation is $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) = \frac{\partial L}{\partial q_k}$ with L = T U
- Define *conjugate (generalized) momentum* : $p_k = \frac{\partial L}{\partial \dot{q}_k}$ Note this is not necessarily linear momentum !

$$ightarrow \,$$
 eg. simple pendulum $L = rac{1}{2}m\ell^2\dot{ heta}^2 + mg\ell\cos heta$

$$ightarrow ~~rac{\partial L}{\partial \dot{ heta}} = m \ell^2 \dot{ heta}$$
 : which is angular momentum

- ▶ Following on, E-L equation reads $\dot{p}_k = \frac{\partial L}{\partial q_k}$
- ► If the Lagrangian L does not explicitly depend on q_k, the coordinate q_k is called *cyclic* or *ignorable*
- With no q_k dependence :

$$\frac{\partial L}{\partial q_k} = 0$$
 and $p_k = \frac{\partial L}{\partial \dot{q}_k} = \text{constant}$

The momentum conjugate to a cyclic coordinate is a constant of motion

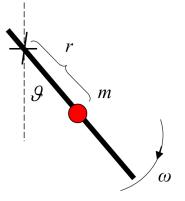
26.2 Example : rotating bead

A bead slides on a wire rotating at constant angular speed ω in a horizontal plane

- Polar coordinates $\underline{\mathbf{v}} = \dot{r}\,\hat{\underline{\mathbf{r}}} + r\dot{\theta}\hat{\underline{\theta}}$
- L = T U with U = 0
- $L = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\omega^2$
- Single variable $q_k \rightarrow r$
- ► E-L $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) = \frac{\partial L}{\partial \dot{r}}$ $\frac{\partial L}{\partial \dot{r}} = m\dot{r} \rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) = m\ddot{r}$ $\frac{\partial L}{\partial r} = mr\omega^{2}$ ► E-L $\rightarrow m\ddot{r} - mr\omega^{2} = 0$

Central force $F_{central} = m\omega^2 r$

$$r = Ae^{\omega t} + Be^{-\omega t}$$



《口》 《聞》 《臣》 《臣》

Example : rotating bead continued

What happens if the angular speed is now a free coordinate ?

- $L = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2$
- Two variables $q_k \rightarrow r, \theta$
- ► *r* variable: as before $\rightarrow m\ddot{r} - mr\dot{\theta}^2 = 0$

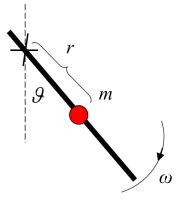
•
$$\theta$$
 variable: $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{\partial L}{\partial \theta}$

•
$$\frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta}$$

•
$$\frac{\partial L}{\partial \theta} = \mathbf{0}$$

• E-L :
$$mr^2\ddot{\theta} = \frac{d}{dt}\left(mr^2\dot{\theta}\right) = 0$$

 $\rightarrow~$ Conservation of angular momentum

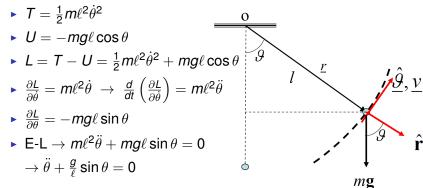


《曰》 《聞》 《臣》 《臣》

26.3 Example : simple pendulum

Evaluate simple pendulum using Euler-Lagrange equation

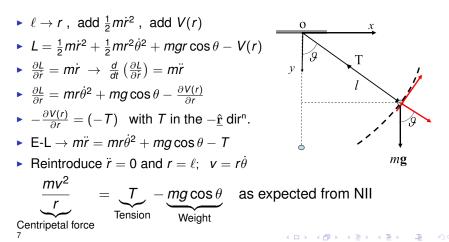
- Single variable $q_k \rightarrow \theta$
- $\blacktriangleright \mathbf{v} = \ell \, \dot{\theta}$



< □ > < @ > < 注 > < 注 > ... 注

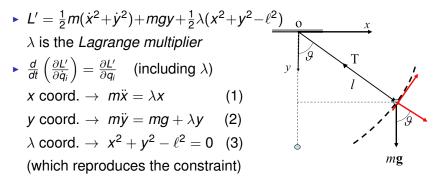
This is great, but note that the method does not get the tension in the string since ℓ is a constraint (see next slide).

26.3.1 Dealing with forces of constraint For the simple pendulum using Euler-Lagrange equation. The method did not get the tension in the string since ℓ was constrained. If we need to find the string tension, we need to include the radial term into the Lagrangian and to include a potential function to represent the tension:



26.3.2 The Lagrange multiplier method

An alternative method of dealing with constraints. Back to the simple pendulum using Euler-Lagrange equation \cdots Before : single variable $q_k \rightarrow \theta$. This time take TWO variables *x*, *y* but introduce a constraint into the equation. L = T - U



Comparing with Newton II : $m\ddot{x} = -\frac{Tx}{\ell}$; $m\ddot{y} = mg - \frac{Ty}{\ell}$. We see from the NII approach the Lagrange multiplier λ is proportional to the string tension $\lambda = -\frac{T}{\ell}$ and introduces force

・ロト ・日下・ ・ ヨト・