Classical Mechanics

LECTURE 25:

THE LAGRANGE EQUATION

 DERIVED VIA THECALCULUS OF VARIATIONS
Prof. N. Harnew
University of Oxford
HT 2017

OUTLINE : 25. THE LAGRANGE EQUATION DERIVED VIA THE CALCULUS OF VARIATIONS

25.1 The Lagrangian : simplest illustration
25.2 A formal derivation of the Lagrange Equation

The calculus of variations
25.3 A sanity check
25.4 Fermat's Principle \& Snell's Law
25.5 Hamilton's principle (Principle of Stationary Action)

25.1 The Lagrangian : simplest illustration

The Lagrangian : $L=T-U$

- In 1D : Kinetic energy $T=\frac{1}{2} m \dot{x}^{2} \quad$ No explicit dependence on x Potential energy $U=U(x)$ No explicit dependence on \dot{x}
- Define the Lagrangian in 1D: $L=\frac{1}{2} m \dot{x}^{2}-U(x)$
- $\frac{\partial L}{\partial \dot{x}}=m \dot{x}$ and $\frac{\partial L}{\partial x}=-\frac{\partial U}{\partial x}$ gives force F
- Differentiate wrt time : $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=m \ddot{x}=F$
- Hence we get the Euler - Lagrange equation for x :

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x}
$$

- Now generalize : the Lagrangian becomes a function of $2 n$ variables (n is the dimension of the configuration space).
Variables are the positions and velocities

$$
L\left(q_{1}, \cdots, q_{n}, \dot{q}_{1}, \cdots, \dot{q}_{n}\right)
$$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right)=\frac{\partial L}{\partial q_{k}}
$$

25.2 The calculus of variations

- Take 2 points $A\left(x_{0}, y_{0}\right)$ and $B\left(x_{1}, y_{1}\right)$
- Curve joining them is represented by equation $y=y(x)$ such that $y(x)$ satisfies the boundary conditions:
$\rightarrow y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$
- We want to find the function $y=y(x)$ subject to the above conditions which makes the closest path between the points a minimum. (note that this differs from what we
 are used to. We are not minimizing a set of variables here but a function).
- This is the calculus of variations. A branch of mathematics that deals with functionals as opposed to functions.

The calculus of variations, continued (1)

- We assume the unknown function f is a continuously differentiable scalar function, and the functional to be minimized depends on $y(x)$ and at most upon its first derivative $y^{\prime}(x)$.
- We then wish to find the stationary values of the path between points: an integral of the form $I=\int_{x_{0}}^{x_{1}} f\left(y, y^{\prime}, x\right) d x$ $\rightarrow f\left(y, y^{\prime}, x\right)$ is a function of x, y and y^{\prime} (the first derivative of y)
- Consider a small change $\delta y(x)$ in the function $y(x)$ subject to the conditions that the endpoints are unchanged :
$\rightarrow \delta y\left(x_{0}\right)=0$ and $\delta y\left(x_{1}\right)=0$
- To first order, the variation in $f\left(y, y^{\prime}, x\right)$ is $\delta f=\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \delta y^{\prime}+\mathcal{O}\left(\delta y^{2}, \delta y^{\prime 2}\right)$
where $\delta y^{\prime}=\frac{d}{d x} \delta y$
- Thus the variation in the integral l is $\delta I=\int_{x_{0}}^{x_{1}}\left[\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \frac{d}{d x} \delta y\right] d x$

The calculus of variations, continued (2)

- $\delta I=\int_{x_{0}}^{x_{1}}\left[\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \frac{d}{d x} \delta y\right] d x$
- Integrate the second term by parts

$$
\underset{\text { term }}{2 n d}=\left[\frac{\partial f}{\partial y^{\prime}} \delta y\right]_{x_{0}}^{x_{1}}-\int_{x_{0}}^{x_{1}} \frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right) \delta y d x
$$

The $\left[\frac{\partial f}{\partial y^{\prime}} \delta y\right]_{x_{0}}^{x_{1}}$ term $=0$ due to the conditions on the end points

- Hence
$\delta I=\int_{x_{0}}^{x_{1}}\left[\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right] \delta y d x$
- For I to be stationary, $\delta I=0$ for any small arbitrary variation $\delta y(x)$

- This is only possible if the integrand vanishes identically
- Hence we get out the Euler-Lagrange Equation

$$
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

The calculus of variations, continued (3)

- So far we have used x as the independent variable with a functional f which is a function of $\left(y(x), y^{\prime}, x\right)$
- Throughout we could have used other variables, in particular time t and generalized coordinates q_{1}, \cdots, q_{n} and derivatives $\dot{q}_{1}, \cdots, \dot{q}_{n}$. The principles would have been the same.
- The integral
$I=\int_{t_{0}}^{t_{1}} f\left[q_{1}(t), \cdots, q_{n}(t), \dot{q}_{1}(t), \cdots, \dot{q}_{n}(t)\right] d t$

must be stationary wrt variations in any one \& all of the variables $q_{1}(t), \cdots, q_{n}(t)$ subject to the conditions $\delta q_{i}\left(t_{0}\right)=\delta q_{i}\left(t_{1}\right)=0$
- We get the n Euler-Lagrange equations for $i=1, \cdots, n$

$$
\frac{\partial f}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{q}_{i}}\right)=0
$$

The E-L equations give the conditions for the closest path between points

25.3 A sanity check

The shortest distance between 2 points.

- Consider 2 neighboring points on the curve $y(x)$ subject to boundary conditions $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$
- Distance between the points $d \ell=\sqrt{d x^{2}+d y^{2}}$
- $d \ell=\sqrt{1+y^{\prime 2}} d x \quad f \equiv \sqrt{1+y^{\prime 2}}$
- The Euler-Lagrange Equation $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$
- $\frac{\partial f}{\partial y}=0, \frac{\partial f}{\partial y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}, \quad \frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$
- Hence $\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=$ constant, hence y^{\prime} is constant
$\rightarrow y=m x+c$
- We have proved that the shortest distance between 2 points is a straight line!

25.4 Fermat's Principle \& Snell's Law

Fermat : The actual path that a light ray propagating between one point to another will take is the one that makes the time travelled between the two points stationary.

Question: at which point $(x, 0)$ will the ray hit the interface between the two media to propagate from A to B ?

- Time taken from A to B :

$$
t(x)=\frac{1}{v_{1}}\left[\left(x-x_{1}\right)^{2}+y_{1}^{2}\right]^{\frac{1}{2}}+\frac{1}{v_{2}}\left[\left(x_{2}-x\right)^{2}+y_{2}^{2}\right]^{\frac{1}{2}}
$$

- The Euler-Lagrange Equation

$$
\frac{\partial t}{\partial x}-\frac{d}{d y}\left(\frac{\partial t}{\partial x^{\prime}}\right)=0 \quad(\text { where the second term }=0)
$$

- $\frac{\partial t}{\partial x}=0=\frac{1}{v_{1}} \frac{x-x_{1}}{\left[\left(x-x_{1}\right)^{2}+y_{1}^{2}\right]^{\frac{1}{2}}}-\frac{1}{v_{2}} \frac{x_{2}-x}{\left[\left(x_{2}-x\right)^{2}+y_{2}^{2}\right]^{\frac{1}{2}}}$
- $\frac{\sin \theta_{1}}{v_{1}}-\frac{\sin \theta_{2}}{v_{2}}=0$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
Snell's Law

$\mathbf{B}\left(x_{2}, y_{2}\right)$

25.5 Hamilton's principle (Principle of Stationary Action)

- Consider for example a particle of mass m at point $\left(x_{A}, y_{A}\right)$ moving under the influence of a force in the $x-y$ plane. We want to find the path that the particle will follow to reach a point $\left(x_{B}, y_{B}\right)$.
- Hamilton's principle: the path that the particle will take from A to B is the one that makes the following functional stationary:
$I=\int_{A}^{B} L\left(q_{1}(t), \cdots, q_{n}(t), \dot{q}_{1}(t), \cdots, \dot{q}_{n}(t)\right) d t$
where L is the Lagrangian, I is called the action integral
- Hence the action integral I is stationary under arbitrary variations $q_{1}(t), q_{2}(t) \cdots$ which vanish at the limits of integration ie. A and B.

