
Classical Mechanics
LECTURE 25:

THE LAGRANGE EQUATION
DERIVED VIA THE

CALCULUS OF VARIATIONS
Prof. N. Harnew

University of Oxford

HT 2017
1



OUTLINE : 25. THE LAGRANGE EQUATION DERIVED
VIA THE CALCULUS OF VARIATIONS

25.1 The Lagrangian : simplest illustration

25.2 A formal derivation of the Lagrange Equation
The calculus of variations

25.3 A sanity check

25.4 Fermat’s Principle & Snell’s Law

25.5 Hamilton’s principle (Principle of Stationary Action)

2



25.1 The Lagrangian : simplest illustration
The Lagrangian : L = T − U

I In 1D : Kinetic energy T = 1
2 mẋ2 No explicit dependence on x

Potential energy U = U(x) No explicit dependence on ẋ
I Define the Lagrangian in 1D : L = 1

2mẋ2 − U(x)
I ∂L

∂ẋ = mẋ and ∂L
∂x = −∂U

∂x gives force F

I Differentiate wrt time : d
dt

(
∂L
∂ẋ

)
= mẍ = F

I Hence we get the Euler - Lagrange equation for x :
d
dt

(
∂L
∂ẋ

)
= ∂L

∂x

I Now generalize : the Lagrangian becomes a function of 2n
variables (n is the dimension of the configuration space).
Variables are the positions and velocities
L(q1, · · · ,qn, q̇1, · · · , q̇n)

d
dt

(
∂L
∂q̇k

)
= ∂L

∂qk
Next we expand on this concept.
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25.2 The calculus of variations

I Take 2 points A(x0, y0) and B(x1, y1)

I Curve joining them is represented by
equation y = y(x) such that y(x)
satisfies the boundary conditions :

→ y(x0) = y0 , y(x1) = y1

I We want to find the function
y = y(x) subject to the above
conditions which makes the closest
path between the points a minimum.

(note that this differs from what we
are used to. We are not minimizing a
set of variables here but a function).

I This is the calculus of variations. A branch of mathematics
that deals with functionals as opposed to functions.
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The calculus of variations, continued (1)

I We assume the unknown function f is a continuously
differentiable scalar function, and the functional to be minimized
depends on y(x) and at most upon its first derivative y ′(x).

I We then wish to find the stationary values of the path between
points: an integral of the form I =

∫ x1

x0
f (y , y ′, x)dx

→ f (y , y ′, x) is a function of x , y and y ′ (the first derivative of y )

I Consider a small change δy(x) in the
function y(x) subject to the conditions that
the endpoints are unchanged :

→ δy(x0) = 0 and δy(x1) = 0
I To first order, the variation in f (y , y ′, x) is
δf = ∂f

∂y δy + ∂f
∂y ′ δy ′ +O(δy2, δy ′2)

where δy ′ = d
dx δy

I Thus the variation in the integral I is

δI =
∫ x1

x0

[
∂f
∂y δy + ∂f

∂y ′
d
dx δy

]
dx
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The calculus of variations, continued (2)
I δI =

∫ x1

x0

[
∂f
∂y δy + ∂f

∂y ′
d
dx δy

]
dx

I Integrate the second term by parts∫
2nd
term =

[
∂f
∂y ′ δy

]x1

x0

−
∫ x1

x0

d
dx

(
∂f
∂y ′

)
δy dx

The
[

∂f
∂y′ δy

]x1

x0
term = 0 due to the

conditions on the end points
I Hence

δI =
∫ x1

x0

[
∂f
∂y −

d
dx

(
∂f
∂y ′

)]
δy dx

I For I to be stationary, δI = 0 for any
small arbitrary variation δy(x)

I This is only possible if the integrand vanishes identically
I Hence we get out the Euler-Lagrange Equation

∂f
∂y −

d
dx

(
∂f
∂y ′

)
= 0
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The calculus of variations, continued (3)
I So far we have used x as the independent

variable with a functional f which is a
function of (y(x), y ′, x)

I Throughout we could have used other
variables, in particular time t and
generalized coordinates q1, · · · ,qn and
derivatives q̇1, · · · , q̇n. The principles would
have been the same.

I The integral
I =

∫ t1
t0

f [q1(t), · · · ,qn(t), q̇1(t), · · · , q̇n(t)]dt

must be stationary wrt variations in any one
& all of the variables q1(t), · · · ,qn(t) subject
to the conditions δqi(t0) = δqi(t1) = 0

I We get the n Euler-Lagrange equations for i = 1, · · · ,n

∂f
∂qi
− d

dt

(
∂f
∂q̇i

)
= 0

The E-L equations give the conditions for the closest path between points
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25.3 A sanity check

The shortest distance between 2 points.

I Consider 2 neighboring points on the curve y(x) subject to
boundary conditions y(x0) = y0 , y(x1) = y1

I Distance between the points d` =
√

dx2 + dy2

I d` =
√

1 + y ′2 dx f ≡
√

1 + y ′2

I The Euler-Lagrange Equation ∂f
∂y −

d
dx

(
∂f
∂y ′

)
= 0

I ∂f
∂y = 0 , ∂f

∂y ′ =
y ′√

1+y ′2
, d

dx

(
∂f
∂y ′

)
= 0

I Hence y ′√
1+y ′2

= constant, hence y ′ is constant

→ y = mx + c
I We have proved that the shortest distance between 2

points is a straight line !
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25.4 Fermat’s Principle & Snell’s Law

Fermat : The actual path that a light ray propagating between one
point to another will take is the one that makes the time travelled
between the two points stationary.

Question: at which point (x ,0) will the ray hit the interface between
the two media to propagate from A to B?

I Time taken from A to B :

t(x) = 1
v1

[
(x − x1)

2 + y2
1
] 1

2 + 1
v2

[
(x2 − x)2 + y2

2
] 1

2

I The Euler-Lagrange Equation
∂t
∂x −

d
dy

(
∂t
∂x′

)
= 0 (where the second term = 0)

I ∂t
∂x = 0 = 1

v1

x−x1

[(x−x1)
2+y2

1 ]
1
2
− 1

v2

x2−x

[(x2−x)2+y2
2 ]

1
2

I sin θ1
v1
− sin θ2

v2
= 0

n1 sin θ1 = n2 sin θ2 Snell’s Law
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25.5 Hamilton’s principle (Principle of Stationary Action)

I Consider for example a particle of mass m at point (xA, yA)
moving under the influence of a force in the x − y plane.
We want to find the path that the particle will follow to
reach a point (xB, yB).

I Hamilton’s principle: the path that the particle will take from
A to B is the one that makes the following functional
stationary :

I =
∫ B

A L (q1(t), · · · ,qn(t), q̇1(t), · · · , q̇n(t))dt

where L is the Lagrangian, I is called the action integral
I Hence the action integral I is stationary under arbitrary

variations q1(t),q2(t) · · · which vanish at the limits of
integration ie. A and B.
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