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23.5 Example 3 : an aircraft landing
The landing wheel of an aircraft may be approximated as a uniform
circular disk of diameter 1 m and mass 200 kg. The total mass of the
aircraft including that of the 10 wheels is 100,000 kg. When landing
the touch-down speed is 50 ms−1. Assume that the wheels support
50% of the total weight of the aircraft.
Determine the time duration of wheel-slip if the coefficient of friction
between the wheels and the ground is 0.5, assuming that the speed
of the plane is not changed significantly.
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An aircraft landing continued
I Torque |τ | = |r× F| = aµM ′g

about O, where M ′ = M
20 (ie. 10

wheels, supporting 50% of mass)
I Angular momentum J = Iω

where I = 1
2ma2 (MoI of solid

disk where m is mass of a wheel)
I τ = dJ

dt = Idω
dt where u = aω

u is the speed of the wheel rim

→ τ = I
a

du
dt = aµM ′g

I Integrate :
∫ tf

0
a2µM′g

I
dt =

∫ v0
0 du

v0 is the speed of the aeroplane

→ tf = v0 I
a2µM ′g = v0 m

2µM ′g

I Putting in numbers: tf = 50×200
2×0.5× 1×105

20 ×9.8
∼ 0.2 s
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An aircraft landing continued

Confirm the assumption that the speed of the plane is not
changed by calculating the speed at the end of wheel-slip in the
absence of other braking processes.

I Energy expended in getting the wheels
up to speed: Ewheels = 1

2Iω
2 × 10 (ie.

10 wheels) = 5
2mv2

0
[ Remember v0 = aω , I = 1

2ma2]

I Total energy of the aeroplane
E = 1

2Mv2

→ Energy loss: δE = Mv δv = 5
2mv2

0

→ δv =
5
2 mv2

0
Mv0

→ δv
v0

=
5
2 m
M

I Putting in numbers : δv
v0

=
5
2×200
1×105

→ a 0.5% effect
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An aircraft landing continued
Calculate the work done during wheel slip.

I Work done : W =
∫
τ dθ = τ θf

(τ is constant, θf is the total turning
angle)

I From before : u = adθ
dt = 2µM′g

m t

I Integrate :
∫ θf

0 a dθ =
∫ tf

0
2µM′g

m t dt

→ a θf =
µM′g

m t2
f where tf =

v0 m
2µM′g

I Putting it all together:

I W = τ θf =
1
a(aµM ′g)︸ ︷︷ ︸

τ

(
M ′gµ

m
)(

v0 m
2µM ′g

)2︸ ︷︷ ︸
θf

= 1
2I(

v0
a )

2

I Hence W = Ewheel =
1
2Iω

2 as expected !
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Lagrange and Hamilton

I Joseph-Louis Lagrange (1736-1810)
I Sir William Rowan Hamilton (1805-1865)
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24.1 Lagrangian mechanics : Introduction

I Lagrangian Mechanics: a very effective way to find the
equations of motion for complicated dynamical systems
using a scalar treatment

→ Newton’s laws are vector relations. The Lagrangian is a
single scalar function of the system variables

I Avoid the concept of force

→ For complicated situations, it may be hard to identify all
the forces, especially if there are constraints

I The Lagrangian treatment provides a framework for
relating conservation laws to symmetry

I The ideas may be extended to most areas of fundamental
physics (special and general relativity, electromagnetism,
quantum mechanics, quantum field theory .... )
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24.2 Introductory example : the energy method for the
E of M

I For conservative forces in 1D motion :

Energy of system : E = 1
2mẋ2 + U(x) [Note dE

dt = 0]

I Differentiate wrt time: mẋẍ + ∂U
∂x ẋ = 0

→ m ẍ = −∂U
∂x = F

→ This is the E of M for a conservative force
I Take a simple 1d spring undergoing SHM :

E = 1
2mẋ2 + 1

2kx2 = constant
dE
dt = 0 → mẋẍ + kxẋ = 0

→ mẍ + kx = 0
I Hence we derived the E of M without using NII directly.
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24.3 Becoming familiar with the jargon

24.3.1 Generalised coordinates

A set of parameters qk (t) that specifies the system
configuration. qk may be a geometrical parameter, x , y , z,
a set of angles · · · etc

24.3.2 Degrees of Freedom

The number of degrees of freedom is the number of
independent coordinates that is sufficient to describe the
configuration of the system uniquely.
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Examples of degrees of freedom

I Ball rolling down an incline

E = 1
2mẋ2 + 1

2Iφ̇
2 −mgx sinα

I But ẋ = Rφ̇→ x = Rφ
I The problem is reduced to

a 1-coordinate variable

q1 ≡ x and q̇1 ≡ ẋ
I System has only 1 degree

of freedom : x

I Pendulum whose pivot can
move freely in x direction

I Pivot coordinates : (x ,0)
I Pendulum coordinates :
(x + ` sin θ,−` cos θ)

E = 1
2 m1ẋ2 + 1

2 m2

(
d
dt (x + ` sin θ)

)2
+

+ 1
2 m2

(
d
dt (−` cos θ)

)2
−mg` cos θ

I This system has 2 degrees
of freedom : x and θ

11



24.3.3 Constraints

I A system has constraints if its components are not
permitted to move freely in 3-D. For example :

→ A particle on a table is restricted to move in 2-D

→ A mass on a simple pendulum is restricted to oscillate
at an angle θ at a fixed length ` from a pivot

I The constraints are Holonomic if :

→ The constraints are time independent

→ The system can be described by relations between
general coordinate variables and time

→ The number of general coordinates is reduced
to the number of degrees of freedom

12



24.3.4 Configuration Space

I The configuration space of a mechanical system is an
n-dimensional space whose points determine the spatial position
of the system in time. This space is parametrized by generalized
coordinates, q = (q1 · · · ,qn)

I Example 1. A point in space determines where the system is;
the coordinates are simply standard Euclidean coordinates:
(x , y , z) = (q1,q2,q3)

I Example 2. A rod location x , angle θ - as it moves in 2D space is
passes through points (x , θ) in the configuration space
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