Classical Mechanics

LECTURE 22:

ROTATIONAL DYNAMICS

Prof. N. Harnew
University of Oxford
HT 2017

OUTLINE : 22. ROTATIONAL DYNAMICS

22.1 Moment of inertia tensor
22.1.1 Rotation about a principal axis
22.2 Moment of inertia \& energy of rotation
22.3 Calculation of moments of inertia
22.3.1 Mol of a thin rectangular plate
22.3.2 Mol of a thin disk perpendicular to plane of disk 22.3.3 Mol of a solid sphere

22.1 Moment of inertia tensor

- Consider bodies rotating around a common axis $\underline{\omega}$, no axis of symmetry, $\underline{\mathbf{J}}$ not necessarily parallel to $\underline{\omega}$, origin O lies on the $\underline{\omega}(\underline{\mathbf{z}})$ axis.
- Definition of angular velocity : $\underline{\dot{\mathbf{r}}}=\underline{\omega} \times \underline{\mathbf{r}}$
- $\underline{\mathbf{J}}=\sum_{i} \underline{\mathbf{r}}_{i} \times \underline{\mathbf{p}}_{i}=\sum_{i} m_{i} \underline{\mathbf{r}}_{i} \times \underline{\dot{\mathbf{r}}}_{i}$

$$
=\sum_{i} m_{i} \underline{\mathbf{r}}_{i} \times\left(\underline{\omega} \times \underline{\mathbf{r}}_{i}\right)
$$

- Use the vector identity

$$
\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}}) \underline{\mathbf{b}}-(\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}) \underline{\mathbf{c}}
$$

$$
\underline{\mathbf{J}}=\sum_{i} m_{i} r_{i}^{2} \underline{\omega}-\sum_{i} m_{i}\left(\underline{\mathbf{r}}_{i} \cdot \underline{\omega}\right) \underline{\mathbf{r}}_{i}
$$

[Note for circular motion in a plane where $\underline{\mathbf{r}}_{i}$ is \perp to $\underline{\omega}, \sum_{i} m_{i}\left(\underline{\mathbf{r}}_{i} \cdot \underline{\omega}\right)=0$, and hence
 in this case \underline{J} is $\|$ to $\underline{\omega}$.]

Moment of inertia tensor continued

- From before : $\quad \underline{\mathbf{J}}=\sum_{i} m_{i} r_{i}^{2} \underline{\omega}-\sum_{i} m_{i}\left(\underline{\mathbf{r}}_{i} \cdot \underline{\omega}\right) \underline{\mathbf{r}}_{i}$
- Can express in terms of components

$$
\begin{aligned}
\left(J_{x}, J_{y}, J_{z}\right)= & \sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)\left(\omega_{x}, \omega_{y}, \omega_{z}\right)- \\
& \sum_{i} m_{i}\left(x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}\right)\left(x_{i}, y_{i}, z_{i}\right)
\end{aligned}
$$

- Construct a matrix equation :
$\left(\begin{array}{l}J_{x} \\ J_{y} \\ J_{z}\end{array}\right)=\left(\begin{array}{ccc}\sum_{i}\left(y_{i}^{2}+z_{i}^{2}\right) m_{i} & -\sum_{i}\left(x_{i} y_{i}\right) m_{i} & -\sum_{i}\left(x_{i} z_{i}\right) m_{i} \\ -\sum_{i}\left(x_{i} y_{i} m_{i}\right. & \sum_{i}\left(x_{i}^{2}+z_{i}^{2}\right) m_{i} & -\sum_{i}\left(y_{i} z_{i}\right) m_{i} \\ -\sum_{i}\left(x_{i} z_{i}\right) m_{i} & -\sum_{i}\left(y_{i} z_{i}\right) m_{i} & \sum_{i}\left(x_{i}^{2}+y_{i}^{2}\right) m_{i}\end{array}\right)\left(\begin{array}{c}\omega_{x} \\ \omega_{y} \\ \omega_{z}\end{array}\right)$
If mass is continuous (rigid body) :
$\left(\begin{array}{l}J_{x} \\ J_{y} \\ J_{z}\end{array}\right)=\left(\begin{array}{ccc}\int\left(y^{2}+z^{2}\right) d m & -\int x y d m & -\int x z d m \\ -\int x y d m & \int\left(x^{2}+z^{2}\right) d m & -\int y z d m \\ -\int x z d m & -\int y z d m & \int\left(x^{2}+y^{2}\right) d m\end{array}\right)\left(\begin{array}{l}\omega_{x} \\ \omega_{y} \\ \omega_{z}\end{array}\right)$
- Hence we can write : $\quad \underline{\mathbf{J}}=\widetilde{\mathrm{I}} \underline{\omega}$
- \widetilde{I} is the Moment of Inertia tensor of the system

22.1.1 Rotation about a principal axis

- In general $\underline{\mathbf{J}}=\widetilde{\mathrm{I}} \underline{\omega}$, where $\widetilde{\mathrm{I}}$ is the Moment of Inertia Tensor

$$
\left(\begin{array}{c}
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{I}_{x x} & \mathrm{I}_{x y} & \mathrm{I}_{x z} \\
\mathrm{I}_{y x} & \mathrm{I}_{y y} & \mathrm{I}_{y z} \\
\mathrm{I}_{z x} & \mathrm{I}_{z y} & \mathrm{I}_{z z}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

- Whenever possible, one aligns the axes of the coordinate system in such a way that the mass of the body evenly distributes around the axes: we choose axes of symmetry.
$\left(\begin{array}{l}J_{x} \\ J_{y} \\ J_{z}\end{array}\right)=\left(\begin{array}{ccc}\mathrm{I}_{x x} & 0 & 0 \\ 0 & \mathrm{I}_{y y} & 0 \\ 0 & 0 & \mathrm{I}_{z z}\end{array}\right)\left(\begin{array}{l}\omega_{x} \\ \omega_{y} \\ \omega_{z}\end{array}\right)$
The diagonal terms are called the principal axes of the moment of inertia.
- Whenever we rotate about an axis of symmetry, for every point A there is a point B which cancels it, and

$$
\underline{\mathbf{J}} \rightarrow J_{z} \underline{\hat{\mathbf{z}}}=I_{z z} \omega \underline{\hat{\mathbf{z}}}
$$

and where $\underline{\mathbf{J}}$ is parallel to $\underline{\omega}$ along the $\underline{\mathbf{z}}$ axis

22.2 Moment of inertia \& energy of rotation

Particles rotating in circular motion about a common axis of rotation with angular velocity $\underline{\omega}$ (where $\underline{\mathbf{v}}_{i}=\underline{\omega} \times \underline{\mathbf{r}}_{i}$).

- Kinetic energy of mass m_{i} :

$$
T_{i}=\frac{1}{2} m_{i} v_{i}^{2}
$$

- Total KE $=\frac{1}{2} \sum_{i}\left(m_{i} v_{i}^{2}\right)$
- $\underline{\mathbf{v}}_{i}=\underline{\omega} \times \underline{\mathbf{r}}_{i}$
$v_{i}=\omega r_{i} \sin \phi_{i}$
$\sin \phi_{i}=\frac{d_{i}}{r_{i}}$
- $T_{\text {rot }}=\frac{1}{2}\left(\sum_{i}^{N} m_{i} d_{i}^{2}\right) \omega^{2}$

$$
T_{\text {rot }}=\frac{1}{2} \mathrm{I}_{z} \omega^{2}
$$

where I_{z} is calculated about the axis of rotation

22.3 Calculation of moments of inertia

22.3.1 Mol of a thin rectangular plate
(a) About the x axis

- $I_{x}=\int y^{2} d m$ $d m=\rho d x d y ; \rho=\frac{M}{a b}$
- $I_{x}=\int y^{2} \rho d x d y$

$$
=\left[\rho \frac{y^{3}}{3}\right]_{-\frac{b}{2}}^{+\frac{b}{2}}[x]_{-\frac{a}{2}}^{+\frac{a}{2}}
$$

$$
=\rho a\left[\frac{b^{3}}{24}+\frac{b^{3}}{24}\right]=\rho a b\left[\frac{b^{2}}{12}\right]
$$

- Hence $I_{x}=\frac{M b^{2}}{12}$
(b) About the y axis
- $\quad I_{y}=\frac{M a^{2}}{12}$

(c) About the z axis
- $\mathrm{I}_{z}=\int \rho d^{2} d x d y$

$$
=\int \rho\left(x^{2}+y^{2}\right) d x d y
$$

$$
=\left[\rho \frac{y^{3}}{3}\right]_{-\frac{b}{2}}^{+\frac{b}{2}}+\left[\frac{x^{3}}{3}\right]_{-\frac{a}{2}}^{+\frac{a}{2}}
$$

- Hence $I_{z}=M\left(\frac{a^{2}+b^{2}}{12}\right)$
22.3.2 MoI of a thin disk perpendicular to plane of disk
- $\mathrm{I}_{z}=\int r^{2} d m$

$$
d m=\rho(2 \pi r d r) ; \rho=\frac{M}{\pi R^{2}}
$$

- $\mathrm{I}_{z}=2 \pi \rho \int r^{3} d r$

$$
=\left[2 \pi \rho \frac{r^{4}}{4}\right]_{0}^{R}=\left(\pi \frac{R^{4}}{2}\right) \frac{M}{\pi R^{2}}
$$

- Hence $I_{z}=\frac{1}{2} M R^{2}$
- For a cylinder thickness t :
- Use cylindrical coordinates $d m=\rho(2 \pi r d r d t) ; \rho=\frac{M}{\pi R^{2} t}$
- $\mathrm{I}_{z}=2 \pi \rho \iint r^{3} d r d t$
- $I_{z}=\frac{1}{2} M R^{2}$, the same.

22.3.3 MoI of a solid sphere

- $d \mathrm{I}=\frac{1}{2} x^{2} d m$ (for a disk) $d m=\rho\left(\pi x^{2} d z\right) ; \rho=\frac{M}{\frac{4}{3} \pi R^{3}}$
$\rightarrow d \mathrm{I}=\frac{\pi \rho}{2} x^{4} d z$
- $\mathrm{I}=\int d \mathrm{I}=\frac{1}{2} \pi \rho \int_{-R}^{+R} x^{4} d z$
- But $x^{2}=R^{2}-z^{2}$
$\mathrm{I}=2 \times \frac{1}{2} \pi \rho \int_{0}^{+R}\left(R^{4}-2 R^{2} z^{2}+z^{4}\right) d z$
$=\pi \rho\left[R^{4} z-\frac{2 R^{2} z^{3}}{3}+\frac{1}{5} z^{5}\right]_{0}^{R}$
$=\pi \rho \frac{8}{15} R^{5}=M\left(\pi \frac{8}{15} R^{5}\right) /\left(\frac{4}{3} \pi R^{3}\right)$

- Hence $I=\frac{2}{5} M R^{2}$

