Classical Mechanics

LECTURE 2: MORE ON VECTORS

Prof. N. Harnew University of Oxford MT 2016

<ロ> (四) (四) (三) (三) (三) (三)

1

OUTLINE : 2. MORE ON VECTORS

2.1 Scalar and vector products

2.1.1 The scalar (dot) product2.1.2 The vector (cross) product2.1.3 Examples of scalar & vector products in mechanics

2.2 Differentiation of vectors

2.2.1 Vector velocity 2.2.2 Vector acceleration

2.1.1 The scalar (dot) product

Scalar (or dot) product definition: $\underline{\mathbf{a}}.\underline{\mathbf{b}} = |\underline{\mathbf{a}}|.|\underline{\mathbf{b}}|\cos\theta \equiv ab\cos\theta$

(write shorthand $|\underline{\mathbf{a}}| = \mathbf{a}$).

- Scalar product is the magnitude of <u>a</u> multiplied by the projection of <u>b</u> onto <u>a</u>.
- Obviously if <u>a</u> is perpendicular to <u>b</u> then <u>a</u>.<u>b</u> = 0
- Also <u>a.a</u> = |a|² (since θ =0°) Hence a = √(<u>a.a</u>)

Properties of scalar product

- (i) $\underline{i}.\underline{i} = \underline{j}.\underline{j} = \underline{k}.\underline{k} = 1$ and $\underline{i}.\underline{j} = \underline{j}.\underline{k} = \underline{k}.\underline{i} = 0$
- (ii) This leads to $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = (a_x \underline{\mathbf{i}} + a_y \underline{\mathbf{j}} + a_z \underline{\mathbf{k}}) \cdot (b_x \underline{\mathbf{i}} + b_y \underline{\mathbf{j}} + b_z \underline{\mathbf{k}})$ = $a_x b_x + a_y b_y + a_z b_z$
- $\begin{array}{ll} \mbox{iii}) & \underline{\mathbf{a}}.\underline{\mathbf{b}} = \underline{\mathbf{b}}.\underline{\mathbf{a}} : \mbox{commutative} \\ & \underline{\mathbf{a}}.(\underline{\mathbf{b}}+\underline{\mathbf{c}}) = \underline{\mathbf{a}}.\underline{\mathbf{b}} + \underline{\mathbf{a}}.\underline{\mathbf{c}} : \mbox{distributive} \end{array}$
- (iv) Parentheses are important Note $(\underline{\mathbf{u}}.\underline{\mathbf{v}}) \underline{\mathbf{w}} \neq \underline{\mathbf{u}} (\underline{\mathbf{v}}.\underline{\mathbf{w}})$ because one is a vector along $\underline{\hat{\mathbf{w}}}$, the other is along $\underline{\hat{\mathbf{u}}}$.

2.1.2 The vector (cross) product

Vector (or cross) product of two vectors, definition: $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = |\underline{\mathbf{a}}||\underline{\mathbf{b}}| \sin\theta \ \underline{\hat{\mathbf{n}}}$

where $\underline{\hat{n}}$ is a *unit vector* in a direction *perpendicular* to both \underline{a} and \underline{b} . To get direction of $\underline{a} \times \underline{b}$ use right hand rule:

- i) Make a set of directions with your *right* hand→ thumb & first index finger, and with middle finger positioned perpendicular to plane of both
- \blacktriangleright ii) Point your thumb along the first vector $\underline{\mathbf{a}}$
- ► iii) Point your 1st index finger along <u>b</u>, making the smallest possible angle to <u>a</u>
- ► iv) The direction of the middle finger gives the direction of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$.

(ロ) (部) (注) (注)

Properties of vector product

$$\bullet \ \underline{\mathbf{i}} \times \underline{\mathbf{j}} = \underline{\mathbf{k}} \quad ; \quad \underline{\mathbf{j}} \times \underline{\mathbf{k}} = \underline{\mathbf{i}} \quad ; \quad \underline{\mathbf{k}} \times \underline{\mathbf{i}} = \underline{\mathbf{j}} \quad ; \quad \underline{\mathbf{i}} \times \underline{\mathbf{i}} = \mathbf{0} \text{ etc.}$$

- $(\underline{\mathbf{a}} + \underline{\mathbf{b}}) \times \underline{\mathbf{c}} = (\underline{\mathbf{a}} \times \underline{\mathbf{c}}) + (\underline{\mathbf{b}} \times \underline{\mathbf{c}})$: distributive
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = -\underline{\mathbf{b}} \times \underline{\mathbf{a}}$: NON-commutative
- $(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}} \neq \underline{\mathbf{a}} \times (\underline{\mathbf{b}} \times \underline{\mathbf{c}})$: NON-associative
- ► If *m* is a scalar, $m(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) = (m\underline{\mathbf{a}}) \times \underline{\mathbf{b}} = \underline{\mathbf{a}} \times (m\underline{\mathbf{b}}) = (\underline{\mathbf{a}} \times \underline{\mathbf{b}})m$

•
$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = 0$$
 if vectors are parallel (0^o)
i.e $\underline{\mathbf{a}} \times \underline{\mathbf{a}} = 0$

Vector product in components

Cross product written out in components:

•
$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = (a_x, a_y, a_z) \times (b_x, b_y, b_z)$$

= $(a_x \underline{\mathbf{i}} + a_y \underline{\mathbf{j}} + a_z \underline{\mathbf{k}}) \times (b_x \underline{\mathbf{i}} + b_y \underline{\mathbf{j}} + b_z \underline{\mathbf{k}})$
• Since $\underline{\mathbf{i}} \times \underline{\mathbf{i}} = \underline{\mathbf{j}} \times \underline{\mathbf{j}} = \underline{\mathbf{k}} \times \underline{\mathbf{k}} = 0$ and $\underline{\mathbf{i}} \times \underline{\mathbf{j}} = \underline{\mathbf{k}}$ etc.
• $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = (a_y b_z - a_z b_y) \underline{\mathbf{i}} - (a_x b_z - a_z b_x) \underline{\mathbf{j}} + (a_x b_y - a_y b_x) \underline{\mathbf{k}}$

This is much easier when we write in *determinant* form:

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \begin{vmatrix} \underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
(1)

2.1.3 Examples of scalar & vector products in mechanics

a) Scalar product

Work done on a body by a force through distance $\underline{\mathbf{dr}}$ from position 1 to 2

 $W_{12} = \int_1^2 \underline{\mathbf{F}} \cdot \underline{\mathbf{dr}}$

Only the component of force parallel to the line of displacement does work.

b) Vector product

A *torque* about O due to a force $\underline{\mathbf{F}}$ acting at B :

 $\underline{\tau} = \underline{\mathbf{r}} \times \underline{\mathbf{F}}$

Torque is a vector with direction perpendicular to both $\underline{\mathbf{r}}$ and $\underline{\mathbf{F}}$, magnitude of $|\underline{\mathbf{r}}||\underline{\mathbf{F}}|\sin\theta$.

《曰》 《聞》 《臣》 《臣》

2.2 Differentiation of vectors

Notation: a dot above the function indicates derivative wrt time. A "dash" indicates derivative wrt a spatial coordinate.

$$\dot{y} \equiv \frac{dy}{dt} \qquad y' \equiv \frac{dy}{dx}$$
$$\dot{\underline{a}} = \lim_{\Delta t \to 0} \frac{\underline{a}(t + \Delta t) - \underline{a}(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \underline{a}}{\Delta t}$$
$$\underline{a}(t) = a_x(t)\underline{i} + a_y(t)\underline{j} + a_z(t)\underline{k}$$
$$\dot{\underline{a}} = \lim_{\Delta t \to 0} \left(\frac{a_x(t + \Delta t) - a_x(t)}{\Delta t} \underline{i} + \dots \right) \qquad \mathbf{a}(t + \Delta t) \qquad \mathbf{a}(t)$$
Hence $\underline{\dot{a}} = \dot{a}_x \underline{i} + \dot{a}_y \underline{j} + \dot{a}_z \underline{k}$

2.2.1 Vector velocity

$$\bullet \ \Delta \underline{\mathbf{r}} = \underline{\mathbf{r}}_2 - \underline{\mathbf{r}}_1$$

$$\underline{\mathbf{v}} = \lim_{\Delta t \to 0} \frac{\Delta \underline{\mathbf{r}}}{\Delta t}$$

 Velocity at any point is tangent to the path at that point

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

큰

•
$$\underline{\mathbf{v}} = \frac{d\underline{\mathbf{r}}}{dt} = \underline{\dot{\mathbf{r}}}$$

In one dimension: Abandon vector notation and simply write $v = \frac{dx}{dt} = \dot{x}$, (+v in +x direction, -v in -x direction).

Example - 1D motion

A body has velocity $v_0 = -15 ms^{-1}$ at position $x_0 = 20m$ and has a time-dependent acceleration $a(t) = 6t - 4 [ms^{-2}]$. Find the value of x for which the body instantaneously comes to rest.

•
$$a(t) = 6t - 4 \ [ms^{-2}]$$
; $x_0 = 20 \ m$; $v_0 = -15 \ ms^{-1}$
• $\dot{v} = 6t - 4 \rightarrow v = \int a(t)dt = 3t^2 - 4t + c$
• At $t = 0, v = -15 \ ms^{-1} \rightarrow c = -15 \ ms^{-1}$
• $v = 3t^2 - 4t - 15$
• $v = 0$ for $3t^2 - 4t - 15 = 3(t - 3)(t + \frac{5}{3}) = 0$
 $\rightarrow t = 3s \ (also - \frac{5}{3}s)$
• $x = \int v(t)dt = t^3 - 2t^2 - 15t + c' \rightarrow x = 20 \ mat \ t = 0, \ c' = 20 \ m$
• $x(t) = 27 - 18 - 45 + 20 = -16 \ m$

2.2.2 Vector acceleration

In one dimension: Abandon vector notation and simply write $a = \frac{dv}{dt} = \dot{v} = \ddot{x}$, (+a in +x direction, -a in -x direction).

Example: constant acceleration - projectile motion in 2D

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ・ヨー のへで

The monkey and the hunter

