Classical Mechanics

LECTURE 2:
 MORE ON VECTORS

Prof. N. Harnew
University of Oxford
MT 2016

OUTLINE : 2. MORE ON VECTORS

2.1 Scalar and vector products
2.1.1 The scalar (dot) product
2.1.2 The vector (cross) product
2.1.3 Examples of scalar \& vector products in mechanics
2.2 Differentiation of vectors
2.2.1 Vector velocity
2.2.2 Vector acceleration

2.1.1 The scalar (dot) product

Scalar (or dot) product definition:
 $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=|\underline{\mathbf{a}}| \cdot|\underline{\mathbf{b}}| \cos \theta \equiv a b \cos \theta$

(write shorthand $|\underline{\mathbf{a}}|=\mathrm{a}$).

- Scalar product is the magnitude of \underline{a} multiplied by the projection of \underline{b} onto $\underline{\mathbf{a}}$.
- Obviously if $\underline{\mathbf{a}}$ is perpendicular to $\underline{\mathbf{b}}$ then $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=0$
- Also $\underline{\mathbf{a}} \cdot \underline{\mathbf{a}}=|a|^{2}\left(\right.$ since $\left.\theta=0^{\circ}\right)$ Hence $a=\sqrt{ }(\underline{\mathbf{a}} \cdot \underline{\mathbf{a}})$

Properties of scalar product

(i) $\underline{\mathbf{i}} \cdot \underline{\mathbf{i}}=\underline{\mathbf{j}} \cdot \underline{\mathbf{j}}=\underline{\mathbf{k}} \cdot \underline{\mathbf{k}}=1$ and $\underline{\mathbf{i}} \cdot \underline{\mathbf{j}}=\underline{\mathbf{j}} \cdot \underline{\mathbf{k}}=\underline{\mathbf{k}} \cdot \underline{\mathbf{i}}=0$
(ii) This leads to $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=\left(a_{x} \underline{\mathbf{i}}+a_{y} \underline{\mathbf{j}}+a_{z} \underline{\mathbf{k}}\right) \cdot\left(b_{x \underline{\mathbf{i}}}+b_{y} \underline{\mathbf{j}}+b_{z} \underline{\mathbf{k}}\right)$
$=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$
iii) $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=\underline{\mathbf{b}} \cdot \underline{\mathbf{a}}$: commutative $\underline{\mathbf{a}} \cdot(\underline{\mathbf{b}}+\underline{\mathbf{c}})=\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}+\underline{\mathbf{a}} \cdot \underline{\mathbf{c}}:$ distributive
(iv) Parentheses are important Note ($\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}) \underline{\mathbf{w}} \neq \underline{\mathbf{u}}(\underline{\mathbf{v}} \cdot \underline{\mathbf{w}})$ because one is a vector along $\underline{\hat{\mathbf{w}}}$, the other is along $\underline{\mathbf{u}}$.

2.1.2 The vector (cross) product

Vector (or cross) product of two vectors, definition:
 $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=|\underline{\mathbf{a}}||\underline{\mathbf{b}}| \sin \theta \underline{\hat{\mathbf{n}}}$

where $\underline{\hat{\hat{n}}}$ is a unit vector in a direction perpendicular to both $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.
To get direction of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ use right hand rule:

- i) Make a set of directions with your right hand \rightarrow thumb \& first index finger, and with middle finger positioned perpendicular to plane of both
- ii) Point your thumb along the first vector a
- iii) Point your 1st index finger along $\underline{\mathbf{b}}$, making the smallest possible angle to a
- iv) The direction of the middle finger gives the direction of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$.

Properties of vector product

$-\underline{\mathbf{i}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}} ; \underline{\mathbf{j}} \times \underline{\mathbf{k}}=\underline{\mathbf{i}} ; \underline{\mathbf{k}} \times \underline{\mathbf{i}}=\underline{\mathbf{j}} ; \underline{\mathbf{i}} \times \underline{\mathbf{i}}=0$ etc.

- $(\underline{\mathbf{a}}+\underline{\mathbf{b}}) \times \underline{\mathbf{c}}=(\underline{\mathbf{a}} \times \underline{\mathbf{c}})+(\underline{\mathbf{b}} \times \underline{\mathbf{c}}):$ distributive
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=-\underline{\mathbf{b}} \times \underline{\mathbf{a}}:$ NON-commutative
- $(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}} \neq \underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}}):$ NON-associative
- If m is a scalar, $m(\underline{\mathbf{a}} \times \underline{\mathbf{b}})=(m \underline{\mathbf{a}}) \times \underline{\mathbf{b}}=\underline{\mathbf{a}} \times(m \underline{\mathbf{b}})=(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) m$
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=0$ if vectors are parallel $\left(0^{\circ}\right)$ i.e $\quad \underline{\mathbf{a}} \times \underline{\mathbf{a}}=0$

Vector product in components

Cross product written out in components:

- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(a_{x}, a_{y}, a_{z}\right) \times\left(b_{x}, b_{y}, b_{z}\right)$
$=\left(a_{x} \underline{\underline{i}}+a_{y} \underline{\mathbf{j}}+a_{z} \underline{\mathbf{k}}\right) \times\left(b_{x} \underline{\mathbf{i}}+b_{y} \underline{\mathbf{j}}+b_{z} \underline{\mathbf{k}}\right)$
- Since $\underline{\mathbf{i}} \times \underline{\mathbf{i}}=\underline{\mathbf{j}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}} \times \underline{\mathbf{k}}=0$ and $\underline{\mathbf{i}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}}$ etc.
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \underline{\mathbf{i}}-\left(a_{x} b_{z}-a_{z} b_{x}\right) \underline{\mathbf{j}}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \underline{\mathbf{k}}$

This is much easier when we write in determinant form:

$$
\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \mathbf{j} & \underline{\mathbf{k}} \tag{1}\\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
$$

2.1.3 Examples of scalar \& vector products in mechanics

- a) Scalar product

Work done on a body by a force through distance dr from position 1 to 2

$$
W_{12}=\int_{1}^{2} \underline{\mathbf{F}} \cdot \underline{\mathbf{d r}}
$$

Only the component of force parallel to the line of displacement does work.

- b) Vector product

A torque about O due to a force \mathbf{F} acting at B :

$$
\underline{\tau}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}
$$

Torque is a vector with direction perpendicular to both $\underline{\underline{r}}$ and $\underline{\mathbf{F}}$,
 magnitude of $|\underline{\mathbf{r}}||\underline{\mathbf{F}}| \sin \theta$.

2.2 Differentiation of vectors

Notation: a dot above the function indicates derivative wrt time. A "dash" indicates derivative wrt a spatial coordinate.

$$
\begin{gathered}
\dot{y} \equiv \frac{d y}{d t} \quad y^{\prime} \equiv \frac{d y}{d x} \\
\underline{\dot{\mathbf{a}}}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{a}(t+\Delta t)-\underline{\mathbf{a}}(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \underline{\mathbf{a}}}{\Delta t} \\
\underline{\mathbf{a}}(t)=a_{x}(t) \underline{\mathbf{i}}+a_{y}(t) \underline{\mathbf{j}}+a_{z}(t) \underline{\mathbf{k}} \\
\underline{\dot{\mathbf{a}}}=\lim _{\Delta t \rightarrow 0}\left(\frac{a_{x}(t+\Delta t)-a_{x}(t)}{\Delta t} \underline{\mathbf{i}}+\ldots\right) \quad \mathbf{a}(\mathrm{t}+\Delta \mathrm{t}) \\
\text { Hence } \underline{\mathbf{a}}=\dot{a}_{x} \underline{\mathbf{i}}+\dot{a}_{y} \underline{\mathbf{j}}+\dot{a}_{z} \underline{\mathbf{k}}
\end{gathered}
$$

2.2.1 Vector velocity

- $\Delta \underline{\mathbf{r}}=\underline{\mathbf{r}}_{2}-\underline{\mathbf{r}}_{1}$

$$
\underline{\mathbf{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \underline{\mathbf{r}}}{\Delta t}
$$

- Velocity at any point is tangent to the path at that point
- $\underline{\mathbf{v}}=\frac{d \mathbf{r}}{d t}=\underline{\dot{\mathbf{r}}}$

In one dimension:
Abandon vector notation and simply write $v=\frac{d x}{d t}=\dot{x}$, ($+v$ in $+x$ direction, $-v$ in $-x$ direction).

Example - 1D motion

A body has velocity $v_{0}=-15 \mathrm{~ms}^{-1}$ at position $x_{0}=20 \mathrm{~m}$ and has a time-dependent acceleration $a(t)=6 t-4\left[\mathrm{~ms}^{-2}\right]$. Find the value of x for which the body instantaneously comes to rest.

- $a(t)=6 t-4\left[m s^{-2}\right] ; x_{0}=20 m ; v_{0}=-15 m s^{-1}$
- $\dot{v}=6 t-4 \rightarrow v=\int a(t) d t=3 t^{2}-4 t+c$
- At $t=0, v=-15 \mathrm{~ms}^{-1} \rightarrow c=-15 \mathrm{~ms}^{-1}$
- $v=3 t^{2}-4 t-15$
- $v=0$ for $3 t^{2}-4 t-15=3(t-3)\left(t+\frac{5}{3}\right)=0$
$\rightarrow t=3 s \quad$ (also $-\frac{5}{3} s$)
- $x=\int v(t) d t=t^{3}-2 t^{2}-15 t+c^{\prime} \rightarrow x=20 m$ at $t=0, c^{\prime}=20 \mathrm{~m}$
- $x(t)=27-18-45+20=-16 m$

2.2.2 Vector acceleration

- $\Delta \underline{\mathbf{v}}=\underline{\mathbf{v}}_{2}-\underline{\mathbf{v}}_{1}$

$$
\underline{\mathbf{a}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \underline{\mathbf{v}}}{\Delta t}=\dot{\mathbf{v}}=\underline{\underline{\ddot{ }}}
$$

In one dimension:
Abandon vector notation and simply write $a=\frac{d v}{d t}=\dot{v}=\ddot{x}$, ($+a$ in $+x$ direction, $-a$ in $-x$ direction).

Example: constant acceleration - projectile motion in $2 D$

- $\underline{\mathbf{a}}=\frac{d \mathbf{v}}{d t}=$ constant
- $\underline{\mathrm{r}}=0$ at $t=0$
- $\int_{v_{0}}^{v} d \underline{\mathbf{v}}=\int_{0}^{t} \underline{a} d t$
$\rightarrow \underline{\mathbf{v}}=\underline{\mathbf{v}}_{0}+\underline{\mathbf{a}} t \quad \rightarrow \underline{\mathbf{v}}=\frac{d \mathbf{r}}{d t}$
- $\int_{0}^{r} d \underline{\mathbf{r}}=\int_{0}^{t}\left(\underline{\mathrm{v}}_{0}+\underline{\mathbf{a}} \mathbf{t}\right) d t$ $\rightarrow \underline{\mathbf{r}}=\underline{\mathbf{v}}_{0} t+\frac{1}{2} \underline{a} t^{2}$

Under gravity: $\underline{\mathbf{a}}=-g \underline{\hat{y}} \rightarrow a_{x}=0 ; \quad a_{y}=-g$

- $v_{x}=v_{0} \cos \theta$
- $v_{y}=v_{0} \sin \theta-g t$
- $x=\left(v_{0} \cos \theta\right) t$
- $y=\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}$

Trajectory: $\quad y=(\tan \theta) x-\frac{g}{2 v_{0}^{2}}\left(\sec ^{2} \theta\right) x^{2}$

The monkey and the hunter

