Classical Mechanics

LECTURE 19:

EXAMPLES OF
 ELLIPTICAL ORBITS

Prof. N. Harnew

University of Oxford
HT 2017

OUTLINE : 19. EXAMPLES OF ELLIPTICAL ORBITS

19.1 Example: mistake in the direction of a satellite 19.1.1 Orbits with the same energy
19.2 Impulse leaving angular momentum unchanged 19.2.1 Orbits with the same angular momentum
19.3 Mutual orbits
19.3.1 Example: binary star

- Mistake is made in boosting a satellite, at radius R, into circular orbit : magnitude of velocity is right but direction is wrong.
- Intended to apply thrust to give velocity v_{0} along circular orbit.
- Instead thrust at angle θ wrt direction of motion.
- Energy of orbit is right, angular momentum is wrong.

Initial circular orbit

What is the perigee and apogee of the resulting orbit? (Points $B \& C$)

- Conservation of angular momentum, points $A \& B$

$$
J=m v_{0} R \sin \left(\frac{\pi}{2}-\theta\right)=m v_{B} r_{B}
$$

- Energy at $A=$ energy at perigee B

$$
\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{R}=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

where $\alpha=G M m$

19.1 Example continued

- At point $B, \dot{r}=0$, energy conservation becomes

$$
\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{R}=\frac{m^{2} v_{0}^{2} R^{2} \cos ^{2} \theta}{2 m r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

- Equate forces for circular motion to get v_{0} :

$$
\frac{m v_{0}^{2}}{R}=\frac{\alpha}{R^{2}} \rightarrow v_{0}^{2}=\frac{\alpha}{m R}
$$

- Sub for v_{0}^{2} : energy conservation becomes

$$
\frac{\alpha}{2 R}-\frac{\alpha}{R}=\frac{\alpha R \cos ^{2} \theta}{2 r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

- $-\frac{1}{2 R}=\frac{R \cos ^{2} \theta}{2 r_{B}^{2}}-\frac{1}{r_{B}}$
- $\left(\times 2 R r_{B}^{2}\right) \rightarrow r_{B}^{2}-2 R r_{B}+R^{2} \cos ^{2} \theta=0$
- $r_{B}=R-\sqrt{R^{2}-R^{2} \cos ^{2} \theta}$, also $r_{C}=R+\sqrt{R^{2}-R^{2} \cos ^{2} \theta}$
- $r_{B}=R(1-\sin \theta) \quad$ Perigee
$r_{C}=R(1+\sin \theta) \quad$ Apogee
19.1.1 Orbits with the same energy

19.2 Impulse leaving angular momentum unchanged

- Example: A satellite in circular orbit has been given an impulse leaving J unchanged. The kinetic energy is changed by $T=\beta T_{0}$. Describe the subsequent motion.
- If J is not changed, impulse must be perpendicular to the direction of motion, with angular part of the velocity unchanged.
- $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$
- Circular orbit:

$$
\begin{align*}
& \rightarrow \dot{r}=0, J=m r_{0} v_{0} \tag{1}\\
& \rightarrow E_{\text {initial }}=\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{r_{0}}
\end{align*}
$$

- Equate forces:

$$
\begin{align*}
& \rightarrow \frac{m v_{0}^{2}}{r_{0}}=\frac{\alpha}{r_{0}^{2}} \\
& \rightarrow v_{0}^{2}=\frac{\alpha}{m r_{0}} \tag{2}
\end{align*}
$$

19.2 Example continued

- New orbit (elliptical): $E_{\text {new }}=\frac{1}{2} \beta m v_{0}^{2}-\frac{\alpha}{\tau_{0}}$
- Equate energies: subsequent motion described by:
- $\frac{1}{2} \beta m v_{0}^{2}-\frac{\alpha}{r_{0}}=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$
- Now solve for $r_{\text {min }}, r_{\text {max }}$. Set $\dot{r}=0$
- From (1), (2), (3) $\rightarrow(\beta-2) r^{2}+2 r_{0} r-r_{0}^{2}=0$
- $r_{\text {min,max }}=\frac{-r_{0} \pm \sqrt{r_{0}^{2}+(\beta-2) r_{0}^{2}}}{(\beta-2)}$
- Example: $\beta=1.001 \rightarrow r_{\text {max }}=1.033 r_{0} r_{\text {min }}=0.968 r_{0}$

Changes in orbit as a result of impulse

19.2.1 Orbits with the same angular momentum

- $E_{\text {ellipse }}=-\frac{\alpha}{2 a}$
- $E_{\text {circle }}=-\frac{\alpha}{2 r_{0}}$

19.3 Mutual orbits

- The two bodies make a mutual elliptical orbit on either side of the C of M (origin) in a straight line through the C of M
- Relative position vector : $\underline{\underline{r}}=\underline{\mathbf{r}}_{2}-\underline{\mathbf{r}}_{1}$
- Definition of C of M about O : $m_{1} \underline{\mathbf{r}}_{1}+m_{2} \underline{\mathbf{r}}_{2}=0$

Mutual orbits continued

- Internal forces: $\underline{\mathbf{F}}_{12}=m_{1} \underline{\underline{\underline{u}}}_{1} \quad, \quad \underline{\mathbf{F}}_{21}=m_{2} \ddot{\underline{\underline{m}}}_{2}$

Then $\quad \ddot{\mathbf{r}}=\ddot{\underline{r}}_{2}-\ddot{\underline{r}}_{\mathbf{1}}=\frac{\mathbf{F}_{21}}{m_{2}}-\frac{\mathbf{F}_{12}}{m_{1}}$
But $\quad \underline{F}_{12}=-\underline{F}_{21}$

- Hence $\quad \ddot{\mathbf{r}}=\underline{\mathbf{F}}_{\mathbf{2 1}}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)$
- Define $\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} \quad \rightarrow \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ μ is the reduced mass of the system
- Hence $\mu \underline{\ddot{\mathbf{r}}}=\underline{\mathbf{F}}_{21}$
and $\mu \ddot{\mathbf{r}}=-\frac{G m_{1} m_{2}}{\left|\underline{\underline{r}}_{2}-\underline{\mathbf{r}}_{1}\right|^{2}} \hat{\underline{\hat{}}}=-\frac{G \mu\left(m_{1}+m_{2}\right)}{\left|\underline{\mathbf{r}}_{2}-\underline{\mathbf{r}}_{1}\right|^{2}} \hat{\underline{\hat{r}}}$
- Therefore Newton's Second Law for mutual motion can be re-written in terms of the position of the second body with respect to the first. The second body has the reduced mass which orbits round the first body with an effective mass equal to the sum of the two masses.

19.3.1 Example: binary star

A binary star consists of two stars bound together by gravity moving in roughly opposite directions along a nearly circular orbit. The period of revolution of the starts about their centre of mass is 14.4 days and the speed of each component is $220 \mathrm{~km} \mathrm{~s}^{-1}$. Find the distance between the two stars and their masses.

- For single star: $v=\left(\frac{r}{2}\right) \omega=\frac{r}{2} \frac{2 \pi}{T}$

- $r=\frac{v T}{\pi}=8.7 \times 10^{10} \mathrm{~m}$
- Mutual motion : $\mu\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\hat{\mathbf{r}}}=-\frac{G m_{1} m_{2}}{r^{2}} \underline{\hat{\mathbf{r}}}$
- For circular motion :

$$
\ddot{r}=\dot{r}=0, \quad r \dot{\theta}^{2}=\text { constant }=r \omega^{2}
$$

- Equating forces:

$$
r \mu \omega^{2}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{G \mu\left(m_{1}+m_{2}\right)}{r^{2}}
$$

- $\left(m_{1}+m_{2}\right)=\frac{r^{3} \omega^{2}}{G} ; m_{1}=m_{2}$ (symmetry)
- $m_{1}=m_{2}=1.25 \times 10^{32} \mathrm{~kg}$

