Classical Mechanics

LECTURE 18:

CENTRAL FORCE : THE ORBIT EQUATION

Prof. N. Harnew University of Oxford HT 2017

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

OUTLINE : 18. CENTRAL FORCE: THE ORBIT EQUATION

18.1 The orbit equation 18.1.1 The ellipse geometry

18.2 Kepler's Laws

18.2.1 Kepler III 18.2.2 Planetary data

18.3 Elliptical orbit via energy ($E_{min} < E < 0$)

18.1 The orbit equation

Note that the derivation of this is off syllabus

► Acceleration in polar coordinates $\mathbf{a} = \ddot{\mathbf{r}} = (\ddot{r} - r\dot{\theta}^2)\,\hat{\mathbf{r}} + \frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})\,\hat{\theta}$

If <u>F</u> = f(r) <u>r</u> only, then F_θ = 0 . J = mr² θ = constant. → F_r = m(r̈ - r θ²) = - ^α/_{r²} (gravitational force, α = GmM)
Hence r̈ = ^{J²}/_{m²r³} - ^α/_{mr²} = ^{u³ J²}/_{m²} - ^{u² α}/_m (where u = ¹/_r) (1)
r̈ = ^{dθ}/_{dt} ^{dr}/_{dθ} = ^J/_{mr²} ^{dr}/_{dθ} = - ^J/_m ^{d(1/r)}/_{dθ} = - ^J/_m ^{du}/_{dθ}
r̈ = ^d/_{dt}(r̈) = ^{dθ}/_{dt} ^d/_{dθ} (- ^J/_m ^{du}/_{dθ}) = -(^{J²}/_{m²} u²) ^{d²u}/_{dθ²}
Substituting in Eq (1) : -(^{J²}/_{m²})u² ^{d²u}/_{dθ²} = ^{u³ J²}/_{m²} - ^{u² α}/_m

$$\rightarrow \frac{d^2 u}{d\theta^2} = -u + \frac{m\alpha}{J^2} \rightarrow \frac{d^2 u}{d\theta^2} = -u + \frac{1}{r_0} \qquad (r_0 = \frac{J^2}{m\alpha})$$

The orbit equation continued

$$\frac{d^2 u}{d\theta^2} = -u + \frac{1}{r_0} \quad \text{where } u = \frac{1}{r} \text{ and } \quad r_0 = \frac{J^2}{m\alpha}$$

- ► Solution is $\frac{1}{r} = \frac{1}{r_0} + C \cos(\theta \theta_0)$ where C, θ_0 = constants $r(\theta) = \frac{r_0}{1 + e \cos(\theta - \theta_0)}$ e = eccentricity $(e = C r_0)$
- ► This is in the form of an ellipse[†]. Also have a link between angular momentum and the ellipse geometry $(J^2 = m \alpha r_0)$.
- \dagger More precisely a conic section, which includes hyperbola, parabola and circle.
- Choose major axis as x axis $\rightarrow \theta_0 = 0$

•
$$r(\theta) = \frac{r_0}{1 + e \cos \theta}$$

• Equivalent form of ellipse : $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$

•
$$b = a\sqrt{(1-e^2)}$$

▶
$$a = \frac{r_0}{(1-e^2)}$$

18.1.1 The ellipse geometry

Example of a rotating planet : the sun is at the ellipse focus F

200

18.2 Kepler's Laws

- KI: "The orbit of every planet is an ellipse with the sun at one of the foci". [Already derived]
- KII: "A line joining a planet and the sun sweeps out equal areas during equal intervals of time". [Already derived]
- KIII: "The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits".

18.2.1 Kepler III

"The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits"

18.2.2 Planetary data

Kepler-III "The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits"

18.3 Elliptical orbit via energy ($E_{min} < E < 0$)

•
$$E = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} - \frac{\alpha}{r}$$

• At turning points
 $\dot{r} = 0 \rightarrow r = r_{min} \text{ or } r = r_{max}$
• $E = \frac{J^2}{2mr^2} - \frac{\alpha}{r}$
 $\rightarrow r^2 + \frac{\alpha}{E}r - \frac{J^2}{2mE} = 0$
 $\rightarrow r = -\frac{\alpha}{2E} \pm \left[\left(\frac{\alpha}{2E}\right)^2 + \frac{J^2}{2mE} \right]^{\frac{1}{2}}$
• $r_{min,max} = -\left(\frac{\alpha}{2E}\right) \left[1 \pm \left(1 + \frac{2EJ^2}{m\alpha^2}\right)^{\frac{1}{2}} \right]$
 e
 $r_{max} = -\frac{\alpha}{2E}(1+e)$, $r_{min} = -\frac{\alpha}{2E}(1-e)$
 $= a(1+e)$

Consistent with the orbit equations. NICE!

Elliptical orbit via energy, continued

$$r(\theta) = \frac{r_0}{1+e\cos\theta}$$

Total energy in ellipse parameters

 $E=rac{lpha}{2r_0}\left(e^2-1
ight)$

•
$$e = 0, r = r_0, E = -\frac{\alpha}{2r_0}$$

 \rightarrow motion in a circle

 \rightarrow motion is an ellipse

► If
$$e = 1$$
, $E = 0$
 $r(\theta) = \frac{r_0}{1 + \cos \theta}$
 \rightarrow motion is a parabola

ightarrow motion is a hyperbola

