## Classical Mechanics

$$
\begin{gathered}
\text { LECTURE 18: } \\
\text { CENTRAL FORCE : } \\
\text { THE ORBIT EQUATION }
\end{gathered}
$$

Prof. N. Harnew
University of Oxford
HT 2017

# OUTLINE : 18. CENTRAL FORCE: THE ORBIT EQUATION 

18.1 The orbit equation
18.1.1 The ellipse geometry
18.2 Kepler's Laws
18.2.1 Kepler III
18.2.2 Planetary data
18.3 Elliptical orbit via energy ( $E_{\min }<E<0$ )

### 18.1 The orbit equation

## Note that the derivation of this is off syllabus

- Acceleration in polar coordinates

$$
\underline{\mathbf{a}}=\ddot{\mathbf{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\hat{\mathbf{r}}}+\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right) \underline{\theta}
$$

- If $\underline{\mathbf{F}}=f(r) \underline{\hat{\mathbf{r}}}$ only, then $F_{\theta}=0 . J=m r^{2} \dot{\theta}=$ constant.

$$
\left.\rightarrow F_{r}=m\left(\ddot{r}-r \dot{\theta}^{2}\right)=-\frac{\alpha}{r^{2}} \quad \text { (gravitational force, } \alpha=G m M\right)
$$

- Hence $\ddot{r}=\frac{J^{2}}{m^{2} r^{3}}-\frac{\alpha}{m r^{2}}=\frac{u^{3} J^{2}}{m^{2}}-\frac{u^{2} \alpha}{m} \quad\left(\right.$ where $u=\frac{1}{r}$ )
- $\dot{r}=\frac{d \theta}{d t} \frac{d r}{d \theta}=\frac{J}{m r^{2}} \frac{d r}{d \theta}=-\frac{J}{m} \frac{d(1 / r)}{d \theta}=-\frac{J}{m} \frac{d u}{d \theta}$
- $\ddot{r}=\frac{d}{d t}(\dot{r})=\frac{d \theta}{d t} \frac{d}{d \theta}\left(-\frac{J}{m} \frac{d u}{d \theta}\right)=-\left(\frac{J^{2}}{m^{2}} u^{2}\right) \frac{d^{2} u}{d \theta^{2}}$
- Substituting in Eq (1): $-\left(\frac{J^{2}}{m^{2}}\right) u^{2} \frac{d^{2} u}{d \theta^{2}}=\frac{u^{3} J^{2}}{m^{2}}-\frac{u^{2} \alpha}{m}$

$$
\rightarrow \frac{d^{2} u}{d \theta^{2}}=-u+\frac{m \alpha}{J^{2}} \rightarrow \quad \frac{d^{2} u}{d \theta^{2}}=-u+\frac{1}{r_{0}} \quad\left(r_{0}=\frac{J^{2}}{m \alpha}\right)
$$

## The orbit equation continued

$$
\frac{d^{2} u}{d \theta^{2}}=-u+\frac{1}{r_{0}} \quad \text { where } u=\frac{1}{r} \text { and } \quad r_{0}=\frac{J^{2}}{m \alpha}
$$

- Solution is $\frac{1}{r}=\frac{1}{r_{0}}+C \cos \left(\theta-\theta_{0}\right)$ where $C, \theta_{0}=$ constants

$$
r(\theta)=\frac{r_{0}}{1+e \cos \left(\theta-\theta_{0}\right)} \quad e=\text { eccentricity } \quad\left(e=C r_{0}\right)
$$

- This is in the form of an ellipse ${ }^{\dagger}$. Also have a link between angular momentum and the ellipse geometry ( $J^{2}=m \alpha r_{0}$ ).
$\dagger$ More precisely a conic section, which includes hyperbola, parabola and circle.
- Choose major axis as $x$ axis $\rightarrow \theta_{0}=0$
- $r(\theta)=\frac{r_{0}}{1+e \cos \theta}$
- Equivalent form of ellipse : $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
- $b=a \sqrt{\left(1-e^{2}\right)}$
- $\boldsymbol{a}=\frac{r_{0}}{\left(1-e^{2}\right)}$



### 18.1.1 The ellipse geometry

Example of a rotating planet : the sun is at the ellipse focus $F$

$$
r(\theta)=\frac{r_{0}}{1+e \cos \theta}
$$

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

- Closest approach $\theta=0$ "perigee" $r_{\text {min }}=\frac{r_{0}}{1+e}$
Furthest approach $\theta=\pi$ "apogee" $r_{\text {max }}=\frac{r_{0}}{1-e}$ ( $\dot{r}=0$ in both cases)
- $r_{\text {max }}+r_{\text {min }}=2 a=\frac{2 r_{0}}{1-e^{2}}$

$$
\begin{aligned}
& \rightarrow \quad r_{0}=a\left(1-e^{2}\right) \\
& \rightarrow x_{c}+r_{\text {min }}=a \rightarrow x_{c}+\frac{r_{0}}{1+e}=a \\
& \quad \rightarrow \quad x_{c}=a-a(1-e) \xrightarrow{=} a e
\end{aligned}
$$

- At point $A, r^{2}=x_{c}^{2}+b^{2} ; \cos \theta=-\frac{x_{c}}{r} ; r=\frac{r_{0}}{1-e x_{c} / r}$

$$
\begin{aligned}
& \rightarrow\left(r_{0}+e x_{c}\right)^{2}=x_{c}^{2}+b^{2} \rightarrow\left(a\left(1-e^{2}\right)+e^{2} a\right)^{2}=e^{2} a^{2}+b^{2} \\
& b=a \sqrt{\left(1-e^{2}\right)} \text { also } r_{\text {min }}=a(1-e) \& r_{\text {max }}=a(1+e)
\end{aligned}
$$

### 18.2 Kepler's Laws

- KI: "The orbit of every planet is an ellipse with the sun at one of the foci". [Already derived]
- KII: "A line joining a planet and the sun sweeps out equal areas during equal intervals of time". [Already derived]
- KIII: "The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits".


### 18.2.1 Kepler III

"The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits"

This is trivial for a circle :

$$
\begin{aligned}
& \rightarrow m r_{0} \omega^{2}=m r_{0}\left(\frac{2 \pi}{T}\right)^{2}=\frac{G m M}{r_{0}^{2}} \\
& \rightarrow r_{0}^{3}=T^{2} \frac{G M}{4 \pi^{2}}
\end{aligned}
$$

For an ellipse:


- $\frac{d A}{d t}=\frac{1}{2} r^{2} \dot{\theta}=\frac{J}{2 m}=$ constant
- Integrate $A=\int_{0}^{T} \frac{J}{2 m} d t \rightarrow A^{2}=\left(\frac{J}{2 m}\right)^{2} T^{2}$
- From before : $r_{0}=a\left(1-e^{2}\right), b=a \sqrt{\left(1-e^{2}\right)} \rightarrow a=\frac{b^{2}}{r_{0}}$
- Area of an ellipse : $A=\pi a b \rightarrow A^{2}=\pi^{2} a^{3} r_{0}$
- Putting it all together $\rightarrow T^{2} \propto a^{3}$


### 18.2.2 Planetary data

Kepler-III" "The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits"


- IMPRESSIVE!


### 18.3 Elliptical orbit via energy $\left(E_{\min }<E<0\right)$

- $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$
- At turning points

$$
\dot{r}=0 \rightarrow r=r_{\text {min }} \text { or } r=r_{\text {max }}
$$

- $E=\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$

$$
\rightarrow r^{2}+\frac{\alpha}{E} r-\frac{J^{2}}{2 m E}=0
$$

$$
\rightarrow r=-\frac{\alpha}{2 E} \pm\left[\left(\frac{\alpha}{2 E}\right)^{2}+\frac{J^{2}}{2 m E}\right]^{\frac{1}{2}}
$$

$-r_{\text {min }, \max }=-\left(\frac{\alpha}{2 E}\right)[1 \pm \underbrace{\left(1+\frac{2 E J^{2}}{m \alpha^{2}}\right)^{\frac{1}{2}}}_{\mathrm{e}}]$

$$
r_{\max }=\underbrace{-\frac{\alpha}{2 E}(1+e)}_{=\mathrm{a}(1+\mathrm{e})}, r_{\text {min }}=\underbrace{-\frac{\alpha}{2 E}(1-e)}_{=\mathrm{a}(1-\mathrm{e})}
$$

Consistent with the orbit equations. NICE!


Also:

$$
\begin{aligned}
& \left(1+\frac{2 E J^{2}}{m \alpha^{2}} \frac{1}{2}\right)=e \\
& E=\frac{m \alpha^{2}}{2 J^{2}}\left(e^{2}-1\right) \\
& \quad=\frac{\alpha}{2 r_{0}}\left(e^{2}-1\right) \\
& \text { where } r_{0}=\frac{J^{2}}{m \alpha} \text { and }
\end{aligned}
$$

$e=$ eccentricity of ellipse.

## Elliptical orbit via energy, continued

$$
r(\theta)=\frac{r_{0}}{1+e \cos \theta}
$$

Total energy in ellipse parameters

$$
E=\frac{\alpha}{2 r_{0}}\left(e^{2}-1\right)
$$

- $e=0, r=r_{0}, E=-\frac{\alpha}{2 r_{0}}$
$\rightarrow$ motion in a circle
- If $0<e<1, E<0$
$\rightarrow$ motion is an ellipse
- If $e=1, E=0$

$$
r(\theta)=\frac{r_{0}}{1+\cos \theta}
$$

$\rightarrow$ motion is a parabola

- If $e>1, E>0$
$\rightarrow$ motion is a hyperbola


