Classical Mechanics

LECTURE 17:

EFFECTIVE POTENTIAL & SIMPLE EXAMPLES

Prof. N. Harnew University of Oxford HT 2017

OUTLINE : 17. EFFECTIVE POTENTIAL & SIMPLE EXAMPLES

17.1 Effective potential 17.1.1 $U_{eff}(r)$ for inverse square law

17.2 Examples 17.2.1 Example 1 : 2-D harmonic oscillator 17.2.2 Example 2 : Rotating ball on table

17.1 Effective potential

- Energy equation : $E = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} + U(r)$
- Define effective potential : $U_{eff}(r) = \frac{J^2}{2mr^2} + U(r)$

$$\rightarrow$$
 then $E = \frac{1}{2}m\dot{r}^2 + U_{eff}(r)$

- ► Note this has the same form as a 1-D energy expression : $\rightarrow E = \frac{1}{2}m\dot{x}^2 + U(x)$
 - ightarrow the analysis becomes 1-D-like problem since $J = {
 m const}$
- Allows to predict important features of motion without solving the radial equation
 - $ightarrow rac{1}{2}m\dot{r}^2 = E U_{eff}(r) \ \leftarrow \ \text{LHS} \ \text{is always positive}$
 - $\rightarrow U_{eff}(r) < E$

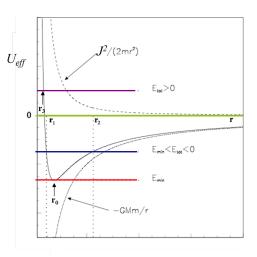
The only locations where the particle is allowed to go are those with $U_{eff}(r) < E$

17.1.1 $U_{eff}(r)$ for inverse square law

• $U_{eff}(r) = \frac{J^2}{2mr^2} - \frac{GmM}{r}$ • $U_{eff}(r) < E_{tot}$ for all r

Three cases :

- ► *E_{tot}* < 0 : Bound (closed) orbit with *r*₁ < *r* < *r*₂
- ► E_{tot} has minimum energy at $r = r_0$: $\frac{dU_{eff}}{dr} = 0$, circular motion with $\dot{r} = 0$
- $E_{tot} > 0$: Unbound (open) orbit with $r > r_3$

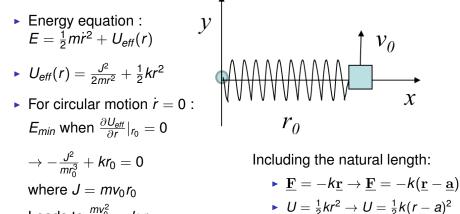


◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

17.2 Examples

17.2.1 Example 1 : 2-D harmonic oscillator

• $\mathbf{\underline{F}} = -k\mathbf{\underline{r}}$ (ignore the natural length of the spring)



Leads to $\frac{mv_0^2}{r_0} = k(r_0 - a)$

《曰》 《聞》 《臣》 《臣》 三臣

• Leads to $\frac{mv_0^2}{r_0} = k r_0$ as expected

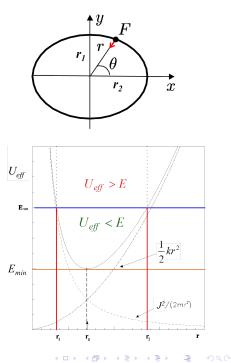
5

Example continued

•
$$U_{eff}(r) = \frac{J^2}{2mr^2} + \frac{1}{2}kr^2$$

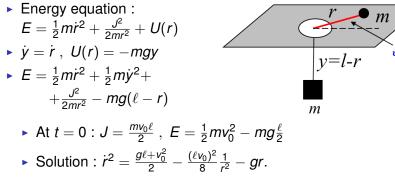
- For general motion :
- $\underline{\mathbf{F}} = -k\underline{\mathbf{r}}$ $\rightarrow m\ddot{\mathbf{x}} = -k\mathbf{x}$
 - $\rightarrow m\ddot{y} = -ky$
- Solution for B.C's at t = 0: x = r₂, y = 0, x = 0
 → x = r₂ cos ωt
 → y = r₁ sin ωt
 where ω² = k/m

 Ellipse: (x/r₂)² + (y/r₁)² = 1



17.2.2 Example 2 : Rotating ball on table

Two particles of mass *m* are connected by a light inextensible string of length ℓ . The particle on the table starts at t = 0 at a distance $\ell/2$ from the hole at a speed v_0 perpendicular to the string. Find the speed at which the particle below the table falls.



Condition for the particle on the table to move in circular motion $\rightarrow \dot{r} = 0$, Equate forces $\frac{mv_0^2}{\ell/2} = mg \rightarrow \text{gives} \quad \frac{v_0^2}{\sigma\ell} = \frac{1}{2}$

Example 2 continued : effective potential

- Effective potential : $U_{eff} = \frac{J^2}{2mr^2} mg(\ell r)$
- Closed orbit with $r_{min} < r < \ell/2$
- Ball never passes though hole in absence of friction, minimum radius r = r_{min}

