Classical Mechanics

LECTURE 16:

ORBITS:
CENTRAL FORCES
Prof. N. Harnew
University of Oxford
HT 2017

OUTLINE : 16. ORBITS : CENTRAL FORCES

16.1 Central force: the equation of motion
16.2 Motion under a central force 16.2.1 Motion in a plane 16.2.2 Sweeping out equal area in equal time
16.3 Central force : the total energy
16.3.1 The potential term (inverse square interaction) 16.3.2 Example

16.1 Central force : the equation of motion

- Recall the acceleration in polar coordinates

$$
\underline{\mathbf{a}}=\underline{\ddot{\mathbf{r}}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\hat{\mathbf{r}}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \underline{\hat{\theta}}
$$

- If $\underline{\mathbf{F}}=f(r) \underline{\hat{\mathbf{r}}}$ only, then $F_{\theta}=0$

$$
\begin{aligned}
& \rightarrow F_{\theta}=m(2 \dot{r} \dot{\theta}+r \ddot{\theta})=0 \\
& \rightarrow F_{r}=m\left(\ddot{r}-r \dot{\theta}^{2}\right)=f(r)
\end{aligned}
$$

- Consider $\frac{d}{d t}\left(r^{2} \dot{\theta}\right)=2 r \dot{r} \dot{\theta}+r^{2} \ddot{\theta}$ Hence $\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=0$
$\rightarrow\left(r^{2} \dot{\theta}\right)=$ constant of motion

- The angular momentum in the plane:

$$
\underline{\mathbf{J}}=m \underline{\mathbf{r}} \times \underline{\mathbf{v}}=m \underline{\mathbf{r}} \times(\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}})=\left(m r^{2} \dot{\theta}\right) \underline{\hat{\mathbf{n}}}
$$

$$
\text { where } \underline{\mathbf{r}} \times \underline{\hat{\mathbf{r}}}=0 \text { and } \underline{\hat{\mathbf{n}}}=\underline{\hat{\mathbf{r}}} \times \underline{\hat{\theta}}
$$

- Torque about origin : $\underline{\tau}=\frac{d \mathbf{J}}{d t}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=0$ ($\underline{\mathbf{F}}$ acts along $\underline{\mathbf{r}}$) Angular momentum vector is a constant of the motion

16.2 Motion under a central force

16.2.1 Motion in a plane

- $\underline{\mathbf{J}}=m \underline{\mathbf{r}} \times \underline{\mathbf{v}}$
- Angular momentum is always perpendicular to $\underline{\underline{r}}$ and \underline{v}
- $\underline{\mathbf{J}}$ is a constant vector ; $\underline{\mathbf{J}} \cdot \underline{\mathbf{r}}=0 ; \underline{\mathbf{J}} \cdot \underline{\mathbf{v}}=\mathbf{0}$

Motion under a central force lies in a plane

16.2.2 Sweeping out equal area in equal time

- Central force example : planetary motion : $\left|\underline{\mathbf{F}}_{r}\right|=\frac{G M m}{r^{2}}$
- Angular momentum is conserved
$\rightarrow|\underline{\mathbf{J}}|=m r^{2} \dot{\theta}=$ constant

- $d A \approx \frac{1}{2} r^{2} d \theta$
- $\frac{d A}{d t}=\frac{1}{2} r^{2} \dot{\theta}$
$\frac{d A}{d t}=\frac{J}{2 m}=$ constant $\quad\left(\right.$ Kepler $2^{\text {nd }}$ Law)
Orbit sweeps out equal area in equal time

16.3 Central force : the total energy

- Total energy $=$ kinetic + potential :
$E=T+U(r)=\frac{1}{2} m v^{2}+U(r)=$ constant
- $\underline{\mathbf{v}}=\dot{r} \underline{\hat{r}}+r \dot{\theta} \underline{\hat{\theta}} \rightarrow|\underline{\mathbf{v}}|^{2}=(\underline{\hat{\mathbf{r}}}+r \dot{\theta} \dot{\theta} \underline{\theta}) \cdot(\underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\theta})$
$\rightarrow|\underline{\mathbf{v}}|^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2} \quad($ since $\underline{\hat{r}} \cdot \underline{\hat{\theta}}=0)$
- $E=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}+U(r)$
- No external torque: angular momentum is conserved $\rightarrow|\underline{\mathbf{J}}|=m r^{2} \dot{\theta}=$ constant

$$
E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)
$$

- Potential energy for a central force

$$
U(r)=-\int_{r_{r e f}}^{r} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=-\int_{r_{r e f}}^{r} f(r) d r
$$

16.3.1 The potential term (inverse square interaction)

- $\underline{\mathbf{F}}=-\frac{A}{r^{2}} \hat{\underline{\hat{}}} \rightarrow f(r)=-\frac{A}{r^{2}}$
[Attractive force for $A>0 \rightarrow$
signs are important !]
- $U(r)=-\int_{r_{r e f}}^{r} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}$

$$
=-\int_{r_{\text {ref }}}^{r} f(r) d r
$$

- $U(r)=-\frac{A}{r}+\frac{A}{r_{\text {ref }}}$

Usual to define $U(r)=0$ at
 $r_{r e f}=\infty$

$$
\rightarrow U(r)=-\frac{A}{r}
$$

Newton law of gravitation : $\underline{\mathbf{F}}=-\frac{G M m}{r^{2}} \underline{\hat{\mathbf{~}}} \rightarrow U(r)=-\frac{G M m}{r}$

16.3.2 Example

A projectile is fired from the earth's surface with speed v at an angle α to the radius vector at the point of launch. Calculate the projectile's subsequent maximum distance from the earth's surface. Assume that the earth is stationary and its radius is a.

16.3.2 Example : solution

- $U(r)=-\frac{G M m}{r}$
- $|\underline{\mathbf{J}}|=m|\underline{\mathbf{r}} \times \underline{\mathbf{v}}|=\operatorname{mav} \sin \alpha$
- Energy equation: $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)$
$\rightarrow E=\frac{1}{2} m \dot{r}^{2}+\frac{m a^{2} v^{2} \sin ^{2} \alpha}{2 r^{2}}-\frac{G M m}{r}$
- At $r=a: E=\frac{1}{2} m v^{2}-\frac{G M m}{a}$. At maximum height : $\dot{r}=0$ $\rightarrow \frac{1}{2} m v^{2}-\frac{G M m}{a}=\frac{m a^{2} v^{2} \sin ^{2} \alpha}{2 r_{\text {max }}^{2}}-\frac{G M m}{r_{\text {max }}}$
$\rightarrow\left(v^{2}-\frac{2 G M}{a}\right) r_{\text {max }}^{2}+2 G M r_{\text {max }}-a^{2} v^{2} \sin ^{2} \alpha=0$
- Solve and take the positive root
- Note from Equ.(1) : When $\dot{r} \rightarrow 0$ as $r_{\text {max }} \rightarrow \infty$, the rocket just escapes the earth's gravitational field

$$
\text { i.e. } \frac{1}{2} m v^{2}-\frac{G M m}{a} \rightarrow 0, v_{e s c}=\sqrt{\frac{2 G M}{a}} \text { (independent of } \alpha \text {) }
$$

