LECTURE 16:
 DIAGONALIZATION OF MATRICES

Prof. N. Harnew University of Oxford

MT 2012

Outline: 16. DIAGONALIZATION OF MATRICES

16.1 Similarity transformation
16.2 Diagonalization of matrices
16.2.1 Prescription for diagonalization of a matrix
16.3 Example of matrix diagonalization
16.4 Example: changing the basis of a hyperboloid

16.1 Similarity transformation

- Consider:
$|\mathbf{p}\rangle \&|\mathbf{q}\rangle \rightarrow$ two general vectors in basis $|\mathbf{e}\rangle$.
$\left|\mathbf{p}^{\prime}\right\rangle \&\left|\mathbf{q}^{\prime}\right\rangle \rightarrow$ the same two vectors transformed to basis $\left|\mathbf{e}^{\prime}\right\rangle$.
- If transformation matrix S transforms $p^{\prime} \rightarrow p$ and $q^{\prime} \rightarrow q$

$$
\begin{aligned}
\rightarrow \quad p=S p^{\prime} & \rightarrow \text { Equ (1) } \\
q=S q^{\prime} & \rightarrow \text { Equ (2) }
\end{aligned}
$$

- If A is a linear operator in basis $|\mathrm{e}\rangle$ which transforms $p \rightarrow q$

	$q=A p$	\rightarrow Equ (3)
and operator A^{\prime} in basis $\left\|\mathbf{e}^{\prime}\right\rangle \quad q^{\prime}=A^{\prime} p^{\prime}$	\rightarrow Equ (4)	
From 1) and 3) $\quad q=A S p^{\prime} \quad$ and then from 2)	$S q^{\prime}=A S p^{\prime}$	
Hence $\quad q^{\prime}=S^{-1} A S p^{\prime} \quad \rightarrow$ Equ (5)		
Compare 4) and 5) $\quad A^{\prime}=S^{-1} A S$		

- Hence similarity transformation $S^{-1} A S$ represents the transformation of operator A in basis $|\mathbf{e}\rangle$ to the equivalent operator A^{\prime} in basis $\left|\mathbf{e}^{\prime}\right\rangle$

16.2 Diagonalization of matrices

- Consider a linear operator A in basis $|\mathbf{e}\rangle$. This has eigenvectors/values x_{j}, λ_{j}. This is represented in matrix form:
$A x_{j}=\lambda_{j} x_{j}$
- Consider a similarity transformation into some basis $\left|\mathbf{e}^{\prime}\right\rangle$ $A \rightarrow A^{\prime}=S^{-1} A S$, where the columns j of the matrix S are the special case of the eigenvectors of the matrix A, i.e. $S_{i j} \equiv\left(x_{j}\right)_{i} \quad$ (for the $i^{\text {th }}$ component of x_{j}).

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \cdots \\
x_{1} & x_{2} & \cdots \\
\downarrow & \downarrow & \cdots
\end{array}\right)
$$

- Consider the individual elements of $S^{-1} A S$ in this case

$$
\begin{aligned}
A_{i j}^{\prime} & =\left(S^{-1} A S\right)_{i j} \\
& =\sum_{k}\left(S^{-1}\right)_{i k}\left(\sum_{m} A_{k m} S_{m j}\right)=\sum_{k} \sum_{m}\left(S^{-1}\right)_{i k} A_{k m} S_{m j} \\
& =\sum_{k} \sum_{m}\left(S^{-1}\right)_{i k} A_{k m}\left(x_{j}\right)_{m} \\
& =\sum_{k}\left(S^{-1}\right)_{i k} \lambda_{j}\left(x_{j}\right)_{k} \\
& =\sum_{k} \lambda_{j}\left(S^{-1}\right)_{i k} S_{k j}=\lambda_{j} \delta_{i j} \quad \text { where } \delta_{i j} \text { is the Kronecker delta. }
\end{aligned}
$$

Hence $S^{-1} A S$ is a diagonal matrix with the eigenvalues of A along the diagonal.

16.2.1 Prescription for diagonalization of a matrix

To "diagonalize" a matrix:

- Take a given $N \times N$ matrix A
- Construct a matrix S that has the eigenvectors of A as its columns
- Then the matrix $\left(S^{-1} A S\right)$ is diagonal and has the eigenvalues of A as its diagonal elements.
- (Note the diagonal matrix will always be real if A is Hermitian.)

16.3 Example of matrix diagonalization

- Diagonalize the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 3 \tag{1}\\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)
$$

- Diagonalize using a matrix of the form ($S^{-1} A S$)

We already found the orthogonal normalized eigenvectors \rightarrow construct S from the eigenvectors:

$$
S=\left(\begin{array}{ccc}
\frac{1}{\sqrt{ } 2} & \frac{1}{\sqrt{ } 3} & \frac{1}{\sqrt{ } 6} \tag{2}\\
\frac{1}{\sqrt{ } 2} & -\frac{1}{\sqrt{ } 3} & -\frac{1}{\sqrt{6}} \\
0 & \frac{1}{\sqrt{ } 3} & -\frac{2}{\sqrt{ } 6}
\end{array}\right)=\frac{1}{\sqrt{ } 6}\left(\begin{array}{ccc}
\sqrt{ } 3 & \sqrt{ } 2 & 1 \\
\sqrt{ } 3 & -\sqrt{ } 2 & -1 \\
0 & \sqrt{ } 2 & -2
\end{array}\right)
$$

- Take the inverse of $S \rightarrow S^{-1}$.

$$
S^{-1}=\frac{1}{\sqrt{ } 6}\left(\begin{array}{ccc}
\sqrt{ } 3 & \sqrt{ } 3 & 0 \tag{3}\\
\sqrt{ } 2 & -\sqrt{ } 2 & \sqrt{ } 2 \\
1 & -1 & -2
\end{array}\right)
$$

Quote without proof: When a matrix is made up of columns of eigenvectors which form an orthonormal set, then
$\rightarrow S^{-1}=S^{\dagger}=S^{* T}$

- Hence

$$
\begin{align*}
& S^{-1} A S=\frac{1}{6}\left(\begin{array}{ccc}
\sqrt{ } 3 & \sqrt{ } 3 & 0 \\
\sqrt{ } 2 & -\sqrt{ } 2 & \sqrt{ } 2 \\
1 & -1 & -2
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{ } 3 & \sqrt{ } 2 & 1 \\
\sqrt{ } 3 & -\sqrt{ } 2 & -1 \\
0 & \sqrt{ } 2 & -2
\end{array}\right) \tag{4}\\
&=\frac{1}{6}\left(\begin{array}{ccc}
\sqrt{ } 3 & \sqrt{ } 3 & 0 \\
\sqrt{ } 2 & -\sqrt{ } 2 & \sqrt{ } 2 \\
1 & -1 & -2
\end{array}\right)\left(\begin{array}{ccc}
2 \sqrt{ } 3 & 3 \sqrt{ } 2 & -6 \\
2 \sqrt{ } 3 & -3 \sqrt{ } 2 & 6 \\
0 & 3 \sqrt{ } 2 & 12
\end{array}\right) \tag{5}\\
&=\frac{1}{6}\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & 18 & 0 \\
0 & 0 & -36
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -6
\end{array}\right) \tag{6}
\end{align*}
$$

- Which is diagonal, as required, and has elements with the eigenvalues of $A(2,3,-6)$ QED.
16.4 Example: changing the basis of a hyperboloid An application of the diagonalization of a matrix.
- Take the hyperboloid $x^{2}+y^{2}-3 z^{2}+2 x y+6 x z-6 y z=4$
- In matrix form $\rightarrow \quad\left(X^{\top} A X\right)=k$

$$
(x, y, z)\left(\begin{array}{ccc}
1 & 1 & 3 \tag{7}\\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=4
$$

(the same equation and matrix of the previous lectures)

Hyperboloid in the $|\mathbf{e}\rangle$ basis i.e. the (x, y, z) Cartesian frame

- Diagonalize A by taking eigenvalues/vectors etc

$$
\rightarrow A^{\prime}=S^{-1} A S
$$

A^{\prime} is then the diagonal matrix of eigenvalues of A

$$
A^{\prime}=\left(\begin{array}{ccc}
2 & 0 & 0 \tag{8}\\
0 & 3 & 0 \\
0 & 0 & -6
\end{array}\right)
$$

- In the $\left|\mathbf{e}^{\prime}\right\rangle$ basis, the transformed frame, the hyperboloid is

$$
\begin{align*}
& \left(x^{\prime}, y^{\prime}, z^{\prime}\right)\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -6
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=4 \tag{9}\\
& \rightarrow \quad 2 x^{\prime 2}+3 y^{\prime 2}-6 z^{\prime 2}=4
\end{align*}
$$

- Hence the transformation $X^{T} A X \rightarrow X^{\prime T} A^{\prime} X^{\prime}$ transforms to an orthogonal basis $\left|\mathbf{e}^{\prime}\right\rangle$ representing the hyperboloid axes; The axes of $\left|\mathbf{e}^{\prime}\right\rangle$ w.r.t. $|\mathbf{e}\rangle$ are given by the eigenvectors of A

$$
\left(\begin{array}{c}
\frac{1}{\sqrt{ }{ }^{2}} \tag{10}\\
\frac{1}{\sqrt{ } 2} \\
0
\end{array}\right),\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right) \text { and }\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
-\frac{2}{\sqrt{ } 6}
\end{array}\right)
$$

Hyperboloid in ($x^{\prime}, y^{\prime}, z^{\prime}$) frame

- Form of equation of hyperboloid in the new basis $\left|\mathbf{e}^{\prime}\right\rangle$ is

$$
\frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime 2}}{b^{2}}-\frac{z^{\prime 2}}{c^{2}}=4
$$

where $a^{2}=\frac{1}{2}, b^{2}=\frac{1}{3}$ and $c^{2}=\frac{1}{6}$

- The normalized eigenvectors of A give the direction of the $\left|\mathbf{e}^{\prime}\right\rangle$ basis axes w.r.t. $|\mathbf{e}\rangle$.

