LECTURE 15:

EIGENVALUES AND EIGENVECTORS

Prof. N. Harnew
University of Oxford

MT 2012

Outline: 15. EIGENVALUES AND EIGENVECTORS

15.1 Eigenvalue equations
15.1.1 Eigenvalues of inverse matrix
15.2 Finding eigenvalues and eigenvectors: example
15.3 Eigenvalues and eigenvectors of an Hermitian matrix 15.3.1 Prove the eigenvalues of Hermitian matrix are real 15.3.2 Prove the eigenvectors of Hermitian matrix are orthogonal

15.1 Eigenvalue equations

- A linear operator A transforms vector $|\mathrm{x}\rangle$ into another vector $A|\mathbf{x}\rangle$. The components of A and $|\mathbf{x}\rangle$ are defined with respect to some N -dimensional basis vectors.
- An eigenvalue equation is one that transforms as

$$
\boldsymbol{A}|\mathbf{x}\rangle=\lambda|\mathbf{x}\rangle
$$

where λ is just a number (can be complex)

- A has transformed $|\mathrm{x}\rangle$ into a multiple of itself
- Vector $|\mathbf{x}\rangle$ is the eigenvector of the operator A λ is the eigenvalue.
- The operator A will have in general a series of eigenvectors $\left|\mathbf{x}_{\mathbf{j}}\right\rangle$ and eigenvalues λ_{j}.
- Write in matrix form:

$$
A x=\lambda x \quad \text { where } A \text { is an } N \times N \text { matrix }
$$

- In QM, often deal with normalized eigenvectors:
$x^{\dagger} x=\langle\mathbf{x} \mid \mathbf{x}\rangle=1$ (where $x^{\dagger}=x^{* T} \rightarrow$ Hermitian conjugate)

Eigenvalue equations continued

- Eigenvalue equation:

$$
A x=\lambda x=\lambda / x \quad(I \text { is the unit matrix })
$$

- $A x-\lambda I x=0$
- $(A-\lambda I) x=0$
- A set of linear simultaneous equations of degree N.
- Homogeneous equations only have a non-trivial solution (x_{i} non-zero) if the determinant

$$
|A-\lambda I|=0
$$

15.1.1 Eigenvalues of inverse matrix

- $A x_{i}=\lambda_{i} x_{i}$
[Subscript i signifies multiple eigenvectors/values can exist]
- Multiply from LHS by A^{-1}
- $A^{-1} A x_{i}=\lambda_{i} A^{-1} x_{i}$
- $A^{-1} A=I$ and on rearranging:
- $A^{-1} x_{i}=\frac{1}{\lambda_{i}} x_{i}$
- Hence the eigenvectors are the same, but the eigenvalues become $\frac{1}{\lambda_{i}}$.
15.2 Finding eigenvalues and eigenvectors: example

$$
|A-\lambda I|=0
$$

- Find the eigenvalues and eigenvectors of the real symmetric matrix

$$
\left(\begin{array}{ccc}
1 & 1 & 3 \tag{1}\\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)
$$

(This is a special kind of Hermitian matrix $\rightarrow A=A^{* T}$).

- First the eigenvalues:
start from $|A-\lambda I|=0$

$$
\text { gives }\left|\begin{array}{ccc}
1-\lambda & 1 & 3 \tag{2}\\
1 & 1-\lambda & -3 \\
3 & -3 & -3-\lambda
\end{array}\right|=0
$$

- $(1-\lambda)[(1-\lambda)(-3-\lambda)-9]$

$$
-[(-3-\lambda)+9]+3[-3-3(1-\lambda)]=0
$$

The Characteristic Equation

Simplify:

$$
\begin{aligned}
& (1-\lambda)[(1-\lambda)(-3-\lambda)-9]-[(-3-\lambda)+9]+3[-3-3(1-\lambda)] \\
= & (1-\lambda)\left[\left(-3+2 \lambda+\lambda^{2}-9\right]-[6-\lambda]+[-9-9+9 \lambda]\right. \\
= & \left(-12+2 \lambda+\lambda^{2}\right)+\left(12 \lambda-2 \lambda^{2}-\lambda^{3}\right)+(-24+10 \lambda) \\
= & -\lambda^{3}-\lambda^{2}+24 \lambda-36 \\
& \text { Hence } \quad \lambda^{3}+\lambda^{2}-24 \lambda+36=0
\end{aligned}
$$

- This is called the characteristic equation.
- The LHS of the equation is called the characteristic polynomial.
- The roots of the characteristic polynomial are the eigenvalues of A.

Finding the roots

- $\lambda^{3}+\lambda^{2}-24 \lambda+36=0$
- Top tip: If the cubic equation has integer roots, minus the roots must multiply up to 36 . Use trial and error to find the first root \rightarrow try integers which are factors of 36 (e.g. $1,-1,2,-2,-3,3$ etc). Plugging in numbers into the equation, in this case $\lambda=2$, "works".
- $(\lambda-2)\left(\lambda^{2}+3 \lambda-18\right)=0$

$$
(\lambda-2)(\lambda-3)(\lambda+6)=0
$$

- Hence the eigenvalues of the equation are 2,3 and -6.

Calculate the eigenvectors

- Take the first eigenvalue $\lambda_{1}=2$. Eigenvalues must satisfy:

$$
\left(\begin{array}{ccc}
1 & 1 & 3 \tag{3}\\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=2 \times\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

- Hence
- Only 2 independent equations:

$$
\begin{gather*}
x_{1}-x_{2}-3 x_{3}=0 \tag{5}\\
3 x_{1}-3 x_{2}-5 x_{3}=0
\end{gather*}
$$

- Immediately yields $x_{3}=0$ and $x_{1}=x_{2}$ ($=k$ say)
- The eigenvector becomes

$$
\left(\begin{array}{l}
k \tag{6}\\
k \\
0
\end{array}\right)
$$

Normalization

- Normalize $\rightarrow k^{2}+k^{2}+0=1 \rightarrow k=\frac{1}{\sqrt{2}}$
- The normalized eigenvector is then $\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right)$
- Solve the other two eigenvector equations:

$$
\begin{align*}
\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =3 \times\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \tag{8}\\
\text { and }\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =-6 \times\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \tag{9}
\end{align*}
$$

- which gives the results for the other two eigenvectors (after normalization):

$$
\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \tag{10}\\
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right) \text { and }\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
-\frac{2}{\sqrt{6}}
\end{array}\right)
$$

Vector orthogonality

- We will see later that the eigenvectors are orthogonal for a Hermitian matrix.
- Check this: $\left\langle\mathbf{x}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{j}}\right\rangle=\mathrm{x}_{\mathbf{i}}^{* T} \mathbf{x}_{\mathbf{j}}$ must equal 0

$$
\begin{gather*}
\left(\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, 0\right)\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right)=\left(\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, 0\right)\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
-\frac{2}{\sqrt{ } 6}
\end{array}\right) \tag{11}\\
=\left(\frac{1}{\sqrt{ } 3},-\frac{1}{\sqrt{ } 3}, \frac{1}{\sqrt{ } 3}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
-\frac{2}{\sqrt{6}}
\end{array}\right)=0 \tag{12}
\end{gather*}
$$

- So the orthogonality is OK

15.3 Eigenvalues and eigenvectors of an Hermitian matrix

15.3.1 Prove the eigenvalues of Hermitian matrix are real

- Take an eigenvalue equation $\rightarrow|\mathbf{x}\rangle$ is an N-dimensional vector

$$
A|\mathbf{x}\rangle=\lambda|\mathbf{x}\rangle \quad \rightarrow \text { Equ (1) }
$$

- Take Hermitian conjugate of both sides

$$
(A|\mathbf{x}\rangle)^{\dagger}=\langle\mathbf{x}| A^{\dagger}=\lambda^{*}\langle\mathbf{x}| \quad\left[\text { recall }(X Y)^{\dagger}=Y^{\dagger} X^{\dagger} \& \quad\langle\mathbf{x}|=|\mathbf{x}\rangle^{* T}\right]
$$

- Multiply on the right by $|\mathrm{x}\rangle$

$$
\langle\mathbf{x}| A^{\dagger}|\mathbf{x}\rangle=\lambda^{*}\langle\mathbf{x} \mid \mathbf{x}\rangle
$$

- But by definition of Hermitian matrix : $A^{\dagger}=A$

$$
\langle\mathbf{x}| \boldsymbol{A}|\mathbf{x}\rangle=\lambda^{*}\langle\mathbf{x} \mid \mathbf{x}\rangle \quad \rightarrow \text { Equ (2) }
$$

- Multiply (1) on the left by $\langle x|$

$$
\langle\mathbf{x}| \boldsymbol{A}|\mathbf{x}\rangle=\lambda\langle\mathbf{x} \mid \mathbf{x}\rangle \quad \rightarrow \text { Equ (3) }
$$

- Subtract (3) from (2)

$$
\left(\lambda^{*}-\lambda\right)\langle\mathbf{x} \mid \mathbf{x}\rangle=0
$$

- Hence since $\langle\mathbf{x} \mid \mathbf{x}\rangle \neq 0, \quad \lambda^{*}=\lambda \quad \rightarrow \quad \lambda$ is real.
15.3.2 Prove the eigenvectors of Hermitian matrix are orthogonal
- Consider two eigenvalues \& eigenvectors satisfying

$$
\begin{array}{ll}
A\left|\mathbf{x}_{\mathbf{i}}\right\rangle=\lambda_{i}\left|\mathbf{x}_{\mathbf{i}}\right\rangle \quad \rightarrow \text { Equ (4) } \\
A\left|\mathbf{x}_{\mathbf{j}}\right\rangle=\lambda_{j}\left|\mathbf{x}_{\mathbf{j}}\right\rangle \quad \rightarrow \text { Equ (5) }
\end{array}
$$

- Take Hermitian conjugate of (4) $\left\langle\mathbf{x}_{\mathbf{i}}\right| \boldsymbol{A}^{\dagger}=\lambda_{i}^{*}\left\langle\mathbf{x}_{\mathbf{i}}\right|$
- Multiply on the right by $\left|\mathrm{x}_{\mathrm{j}}\right\rangle$

$$
\left\langle\mathbf{x}_{\mathbf{i}}\right| \boldsymbol{A}^{\dagger}\left|\mathbf{x}_{\mathbf{j}}\right\rangle=\lambda_{i}^{*}\left\langle\mathbf{x}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{j}}\right\rangle \quad \rightarrow \text { Equ (6) }
$$

- Multiply Equ (5) on the left by $\left\langle\mathbf{x}_{\mathbf{i}}\right|$

$$
\left\langle\mathbf{x}_{\mathbf{i}}\right| A\left|\mathbf{x}_{\mathbf{j}}\right\rangle=\lambda_{j}\left\langle\mathbf{x}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{j}}\right\rangle \quad \rightarrow \text { Equ (7) }
$$

- By definition $A^{\dagger}=A$, and λ_{i}, λ_{j} are real. Subtract (6) - (7)

$$
\left(\lambda_{i}-\lambda_{j}\right)\left\langle\mathbf{x}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{j}}\right\rangle=0
$$

- Hence since $\left(\lambda_{i} \neq \lambda_{j}\right) \quad\left\langle\mathbf{x}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{j}}\right\rangle=0$ and the eigenvectors are orthogonal.

