LECTURE 14:

EXAMPLES OF CHANGE OF BASIS AND
MATRIX TRANSFORMATIONS.
QUADRATIC FORMS.
Prof. N. Harnew
University of Oxford
MT 2012

Outline: 14. EXAMPLES OF CHANGE OF BASIS

AND MATRIX TRANSFORMATIONS. QUADRATIC FORMS.

14.1 Examples of change of basis
14.1.1 Representation of a 2D vector in a rotated coordinate frame
14.1.2 Rotation of a coordinate system in 2D
14.2 Rotation of a vector in fixed 3D coord. system
14.2. 1 Example 1
14.2.2 Example 2
14.3 MATRICES AND QUADRATIC FORMS
14.3.1 Example 1: a 2×2 quadratic form
14.3.2 Example 2: another 2×2 quadratic form
14.3.3 Example 3 : a 3×3 quadratic form

14.1 Examples of change of basis

14.1.1 Representation of a 2D vector in a rotated coordinate frame

- Transformation of vector $\underline{\underline{r}}$ from Cartesian axes (x, y) into frame $\left(x^{\prime}, y^{\prime}\right)$, rotated by angle θ

$$
\begin{aligned}
& x^{\prime}=r \cos \alpha \\
& x=r \cos (\theta+\alpha) \\
& \rightarrow \quad x^{\prime}=\frac{x \cos \alpha}{\cos (\theta+\alpha)}
\end{aligned}
$$

$$
x \cos \alpha=x^{\prime} \cos \theta \cos \alpha-x^{\prime} \sin \theta \sin \alpha
$$

Since $x^{\prime} \sin \alpha=y^{\prime} \cos \alpha$

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta
$$

$y=r \sin (\theta+\alpha)$
$\rightarrow y^{\prime}=\frac{y \sin \alpha}{\sin (\theta+\alpha)}$
$y \sin \alpha=y^{\prime} \sin \theta \cos \alpha+y^{\prime} \cos \theta \sin \alpha$
Since $y^{\prime} \cos \alpha=x^{\prime} \sin \alpha$
$y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$

- Coordinate transformation:

$$
\binom{x}{y}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{1}\\
\sin \theta & \cos \theta
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}
$$

- Take the inverse:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{2}\\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

These equations relate the coordinates of $\underline{\underline{r}}$ measured in the (x, y) frame with those measured in the rotated (x^{\prime}, y^{\prime}) frame

14.1.2 Rotation of a coordinate system in $2 D$

- Start from the familiar orthonormal basis

$$
\begin{equation*}
\left|\mathbf{e}_{\mathbf{1}}\right\rangle=\binom{1}{0} \quad(\equiv \underline{\hat{\mathbf{x}}}), \quad\left|\mathbf{e}_{2}\right\rangle=\binom{0}{1} \quad(\equiv \underline{\hat{\hat{y}}}) \tag{3}
\end{equation*}
$$

- Transform the basis via a rotation through an angle θ

New basis : $\left|\mathbf{e}_{\mathbf{1}}^{\prime}\right\rangle=\binom{\cos \theta}{\sin \theta}\left(\equiv \underline{\hat{\mathbf{x}}^{\prime}}\right), \quad\left|\mathbf{e}_{\mathbf{2}}^{\prime}\right\rangle=\binom{-\sin \theta}{\cos \theta} \quad\left(\equiv \underline{\hat{\mathbf{y}}^{\prime}}\right)$

- The transformation matrix S is determined from $\left|\mathbf{e}_{\mathbf{i}}^{\prime}\right\rangle=S\left|\mathbf{e}_{\mathbf{i}}\right\rangle$

$$
\begin{gather*}
\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{1}{0}=\binom{\cos \theta}{\sin \theta} \Rightarrow \begin{array}{l}
S_{11}=\cos \theta \\
S_{21}=\sin \theta
\end{array} \tag{5}\\
\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{0}{1}=\binom{-\sin \theta}{\cos \theta} \Rightarrow \begin{array}{l}
S_{12}=-\sin \theta \\
S_{22}=\cos \theta
\end{array} \tag{6}\\
\text { Hence } S(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \tag{7}
\end{gather*}
$$

As expected, the basis transformation matrix $|\mathbf{e}\rangle \rightarrow\left|\mathbf{e}^{\prime}\right\rangle$ is the inverse of the transformation $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ of the components derived in the previous sub-section.

- The inverse transformation matrix rotates backwards

$$
S^{-1}(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{8}\\
-\sin \theta & \cos \theta
\end{array}\right) \equiv S(-\theta)
$$

- It is easy to show via substitution that two successive rotations

$$
\boldsymbol{S}(\theta) \boldsymbol{S}(\alpha)=\boldsymbol{S}(\alpha) \boldsymbol{S}(\theta)=\boldsymbol{S}(\theta+\alpha)
$$

14.2 Rotation of a vector in fixed 3D coord. system

- In 3D, we can rotate a vector \underline{r} about any one of the three axes

$$
\underline{\mathbf{r}}^{\prime}=R(\theta) \underline{\mathbf{r}}
$$

A rotation about the z axis is given by

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \tag{9}\\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Note that rotations of a vector in a fixed coordinate system transform in the same way as rotations of the base vectors (see previous section).

- For rotations about the x and y axes

$$
R_{x}(\alpha)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{10}\\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right), \quad R_{y}(\gamma)=\left(\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right)
$$

- But note that now for successive rotations:

$$
R_{z}(\theta) R_{x}(\alpha) \neq R_{x}(\alpha) R_{z}(\theta)
$$

14.2.1 Example 1

Rotate the unit vector
 $(1,0,0)$ by 90° about the z-axis

$$
\begin{aligned}
& R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \\
\rightarrow & \left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

\rightarrow Which is a unit vector along the y-axis (as expected).

- Now make a $2^{\text {nd }}$ rotation of 90° about the x-axis:

$$
R_{X}\left(90^{\circ}\right) R_{z}\left(90^{\circ}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

So ... by now the procedure of matrix multiplication should be clear: the exact form of the row/column multiplication is necessary to make a linear transformation between two bases. It is also the required form for rotations of vectors in their associated vector space(s).

14.2.2 Example 2

- Rotate the vector $\underline{\underline{r}}=(1,2,3)$ by 30° about the y axis. $\sin 30^{\circ}=1 / 2 ; \quad \cos 30^{\circ}=\sqrt{ } 3 / 2$
- The rotation matrix is

$$
\begin{gather*}
R_{y}(\gamma)=\left(\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right)=\left(\begin{array}{ccc}
\sqrt{ } 3 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
-1 / 2 & 0 & \sqrt{ } 3 / 2
\end{array}\right) \tag{11}\\
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\sqrt{ } 3 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
-1 / 2 & 0 & \sqrt{ } 3 / 2
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
\sqrt{ } 3 / 2+3 / 2 \\
2 \\
-1 / 2+3 \sqrt{ } 3 / 2
\end{array}\right) \tag{12}
\end{gather*}
$$

- As a check - rotate back \rightarrow use inverse matrix

$$
\begin{align*}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
\sqrt{ } 3 / 2 & 0 & -1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & \sqrt{ } 3 / 2
\end{array}\right)\left(\begin{array}{c}
\sqrt{ } 3 / 2+3 / 2 \\
2 \\
-1 / 2+3 \sqrt{ } 3 / 2
\end{array}\right) \tag{13}\\
= & \left(\begin{array}{c}
3 / 4+3 \sqrt{ } 3 / 4+1 / 4-3 \sqrt{ } 3 / 4 \\
2 \\
\sqrt{ } 3 / 4+3 / 4-\sqrt{ } 3 / 4+9 / 4
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \text { as required. } \tag{14}
\end{align*}
$$

14.3 MATRICES AND QUADRATIC FORMS

Best illustrated by a few examples.

$$
\text { 14.3.1 Example 1: a } 2 \times 2 \text { quadratic form }
$$

-Represent equation $x^{2}+y^{2}=1$ in matrix form $X^{\top} A X=1$

- Matrix A is a transformation matrix which represents the conic form of the equation.

$$
x^{2}+y^{2}=(x, y)\binom{x}{y}=(x, y)\left(\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 1
\end{array}\right)\binom{x}{y}=1
$$

14.3.2 Example 2: another 2×2 quadratic form

- Matrix representation:

$$
(x, y)\left(\begin{array}{ll}
5 & 2 \tag{16}\\
2 & 3
\end{array}\right)\binom{x}{y}=5
$$

- Write in equation form:

$$
\begin{align*}
& =(x, y)\binom{5 x+2 y}{2 x+3 y} \tag{17}\\
& =5 x^{2}+(2 x y+2 x y)+3 y^{2}=5 x^{2}+4 x y+3 y^{2} \\
& \rightarrow 5 x^{2}+4 x y+3 y^{2}=5
\end{align*}
$$

14.3.3 Example 3: a 3×3 quadratic form

- Represent $x^{2}+y^{2}-3 z^{2}+2 x y+6 x z-6 y z=4$ in the matrix form ($X^{T} A X$).
- Write

$$
\begin{align*}
& \text { Write } \tag{18}\\
& \quad(x, y, z)\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=(x, y, z)\left(\begin{array}{l}
a x+b y+c z \\
d x+e y+f z \\
g x+h y+i z
\end{array}\right) \\
& =a x^{2}+b x y+c x z+d x y+e y^{2}+f y z+g x z+h y z+i z^{2}
\end{align*}
$$

- Comparing terms:
$\left[x^{2}\right] \rightarrow a=1 ; \quad\left[y^{2}\right] \rightarrow e=1 ; \quad\left[z^{2}\right] \rightarrow i=-3$
$[x y] \rightarrow b+d=2 ; \quad[x z] \rightarrow c+g=6 ; \quad[y z] \rightarrow f+h=-6$
(underconstrained)
- In echelon form:
set $b=c=f=0$

$$
X^{T}\left(\begin{array}{ccc}
1 & 0 & 0 \tag{19}\\
2 & 1 & 0 \\
6 & -6 & -3
\end{array}\right) X=4
$$

- In symmetrical form:
set $b=d, \quad c=g, f=h$

$$
X^{T}\left(\begin{array}{ccc}
1 & 1 & 3 \tag{20}\\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right) X=4
$$

