Classical Mechanics

LECTURE 13:

MOTION OF CHARGE

$$
I N E \& B F I E L D S
$$

Prof. N. Harnew
University of Oxford
HT 2017

OUTLINE : 13. MOTION OF CHARGE IN E \& B FIELDS

13.1 Magnetic Force on a Charged Particle
13.2 B Field only, $v \perp B$
13.3 Motion under electric and magnetic fields
13.4 Kinetic energy in E \& B fields
13.4.1 B only, $v \perp B$ 13.4.2 B and E
13.5 Cyclotron motion ($E \& B$ fields)

13.1 Magnetic Force on a Charged Particle

$\underline{\mathbf{F}}=\mathbf{q} \underline{\mathbf{v}} \times \underline{\mathbf{B}}$

- \underline{F} is the magnetic force
- q is the charge
- $\underline{\mathrm{v}}$ is the velocity of the moving charge
- \underline{B} is the magnetic field

Because the magnetic force is perpendicular to the displacement ($d W=\underline{\mathbf{F} . d x}$), the force does no work on the particle

- Kinetic energy does not change
- Speed does not change
- Only direction changes
- Particle moves in a circle if $v \perp B$

$\underline{\mathbf{F}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}$

Newton's second law in components

- $m \ddot{x}=F_{X}$
- $m \ddot{y}=F_{y}$
- $m \ddot{z}=F_{z}$

Simple case: \underline{v} perpendicular to $\underline{\mathbf{B}}$

- Magnetic force= centripetal force
- $F=q v B=\frac{m v^{2}}{R}$ (magnitudes)
where R is the radius of curvature
- $R=\frac{m v}{q B}=\frac{p}{q B}$
p is the particle momentum

13.2 B Field only, $\underline{\mathbf{v}} \perp \underline{\mathrm{B}}$

$$
m \underline{\ddot{\ddot{ }}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}
$$

- $m \ddot{x}=F_{x}, m \ddot{y}=F_{y}, m \ddot{z}=F_{z}$
- $\underline{\mathrm{B}}$-field only $\rightarrow \underline{\mathrm{B}}=B_{z} \underline{\mathbf{k}}$
- $\underline{\mathbf{v}}=(\dot{x}, \dot{y}, 0)$
$\underline{\mathbf{v}} \times \underline{\mathbf{B}}=\left|\begin{array}{ccc}\dot{\mathbf{i}} & \mathbf{j} & \underline{\mathbf{k}} \\ \dot{x} & \dot{y} & \dot{z} \\ 0 & 0 & B_{z}\end{array}\right|=\dot{y} B_{z} \underline{\mathbf{i}}-\dot{x} B_{z} \underline{\mathbf{j}}$
- $m \ddot{x}=q B_{z} \dot{y} ; \quad m \ddot{y}=-q B_{z} \dot{x}$
- $\ddot{x}=\omega \dot{y} ; \quad \ddot{y}=-\omega \dot{x} \quad$ where $\omega=\frac{q B_{z}}{m}$

- $\dot{y}=-\omega x+c ; \quad(\dot{y}=0$ at $t=0 \rightarrow c=0)$
- At $t=0$:
- $\underline{\mathbf{r}}_{0}=(0,0,0)$
- $\underline{\mathbf{v}}_{0}=\left(u_{0}, 0,0\right)$
- $\ddot{x}+\omega^{2} x=0 \rightarrow x=A_{1} \cos \omega t+A_{2} \sin \omega t$
- At $t=0, x=0 \rightarrow A_{1}=0 \rightarrow x=A_{2} \sin \omega t$
- $\dot{x}=A_{2} \omega \cos \omega t$; at $t=0, \dot{x}=u_{0} \rightarrow A_{2}=\frac{u_{0}}{\omega}$

B Field only, continued

$$
x=\frac{u_{0}}{\omega} \sin \omega t
$$

- From before :
$\dot{y}=-\omega x=-u_{0} \sin \omega t$
- $y=\frac{u_{0}}{\omega} \cos \omega t+c^{\prime}$
- At $t=0, y=0 \rightarrow c^{\prime}=-\frac{u_{0}}{\omega}$

$$
y=\frac{u_{0}}{\omega}(\cos \omega t-1)
$$

- $x=R \sin \omega t \quad\left(R=\frac{u_{0}}{\omega}=\frac{u_{0} m}{q B_{z}}\right)$
- $y+R=R \cos \omega t$
\rightarrow Circle $x^{2}+(y+R)^{2}=R^{2}$
- If at $t=0, \underline{\mathbf{v}}_{0}=\left(u_{0}, 0, w_{0}\right)$

The particle will spiral in circles about the z-direction:

$$
z=w_{0} t ; x^{2}+(y+R)^{2}=R^{2}
$$

13.3 Motion under electric and magnetic fields

$$
m \underline{\ddot{\ddot{ }}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}+q \underline{\mathbf{E}}
$$

- $m \ddot{x}=F_{x}, m \ddot{y}=F_{y}, m \ddot{z}=F_{z}$
- $\underline{\mathrm{B}}$-field $\rightarrow \underline{\mathrm{B}}=B_{z} \underline{\mathrm{k}}$
- $\underline{\mathrm{E}}$-field $\rightarrow \underline{\mathrm{E}}=E_{x} \underline{\underline{\mathrm{i}}}$
$\mathbf{v} \times \underline{\mathbf{B}}=\left|\begin{array}{ccc}\underline{\dot{x}} & \mathbf{j} & \underline{\mathbf{k}} \\ \dot{\bar{y}} & \dot{z} \\ 0 & 0 & B_{z}\end{array}\right|=\dot{y} B_{z} \underline{\underline{i}}-\dot{x} B_{z} \mathbf{j}$
- $m \ddot{x}=q B_{z} \dot{y}+q E_{x} ; \quad m \ddot{y}=-q B_{z} \dot{x}$
- At $t=0$:
- $\ddot{x}=\omega \dot{y}+\frac{q E_{x}}{m}$ where $\omega=\frac{q B_{z}}{m}$
- $\dot{y}=-\omega x \quad$ (as before $\dot{y}=0$ at $t=0$)

- $\ddot{x}+\omega^{2} x=\frac{q E_{x}}{m}$: solution $x=x_{1}+x_{2}$
- Complementary function : $x_{1}=A_{1} \cos \omega t+A_{2} \sin \omega t$
- Particular integral : $x_{2}=\frac{q E_{x}}{m \omega^{2}}$

Electric and magnetic fields, continued

- $x=A_{1} \cos \omega t+A_{2} \sin \omega t+\frac{q E_{x}}{m \omega^{2}}$

Define $a=\frac{q E_{x}}{m \omega^{2}}$

- $t=0, x=0 \rightarrow A_{1}+a=0$
- $t=0, \dot{x}=0 \rightarrow A_{2}=0$

$$
x=a(1-\cos \omega t)
$$

- From before :
$\dot{y}=-\omega x=-a \omega(1-\cos \omega t)$
- $y=a(\sin \omega t-\omega t)+c$
- At $t=0, y=0 \rightarrow c=0$

$$
y=a(\sin \omega t-\omega t)
$$

- $-a \cos \omega t=x-a$

B	${ }^{b_{x}=a}$	E	
			Path of particle on of centres

- $a \sin \omega t=y+a \omega t$
$\rightarrow \mathrm{A}$ circle rolling down the $-y$ axis : $(x-a)^{2}+(y+a \omega t)^{2}=a^{2}$

13.4 Kinetic energy in $E \& B$ fields

13.4.1 B only, $v \perp B$

- $x=\frac{u_{0}}{\omega} \sin \omega t \rightarrow \dot{x}=u_{0} \cos \omega t$
- $y=\frac{u_{0}}{\omega}(\cos \omega t-1)$
$\rightarrow \dot{y}=-u_{0} \sin \omega t$

- $T=\frac{1}{2} m\left[u_{0} \cos \omega t\right]^{2}+\frac{1}{2} m\left[-u_{0} \sin \omega t\right]^{2}$
$=\frac{1}{2} m u_{0}^{2} \rightarrow$ No energy change

13.4.2 B and E

- $x=a(1-\cos \omega t) \rightarrow \dot{x}=a \omega \sin \omega t$
- $y=a(\sin \omega t-\omega t)$

$$
\rightarrow \dot{y}=a \omega(\cos \omega t-1)
$$

- $T=\frac{1}{2} m(a \omega)^{2}(1+1-2 \cos \omega t)$
$=\frac{1}{2} m(2 \boldsymbol{a} \omega)^{2} \sin ^{2} \frac{\omega t}{2} \rightarrow$ W.D. by $\underline{\mathbf{E}}$ field

13.5 Cyclotron motion ($E \& B$ fields)

- Let the electric field vary with time as:

$$
\underline{\mathbf{E}}=E_{0}\left(\begin{array}{c}
\cos \omega t \\
-\sin \omega t \\
0
\end{array}\right), \underline{\mathbf{B}}=B_{z} \underline{\mathbf{k}}
$$

- Can show by direct substitution $x(t)=R[\omega t \sin \omega t+\sin \omega t-1]$ $y(t)=R[\omega t \cos \omega t-\sin \omega t]$ is a solution of the EOM where $R=\frac{q E_{0}}{m \omega^{2}}$ and $\omega=\frac{q B_{z}}{m}$ ω is the Cyclotron frequency
- $(x+R)^{2}+y^{2}=R^{2}\left[(\omega t)^{2}+1\right]$
- $T=\frac{1}{2} m\left[\dot{x}^{2}+\dot{y}^{2}\right]=\frac{1}{2} m R^{2} \omega^{4} t^{2}$
\rightarrow particle accelerator

