LECTURE 13:

SIMULTANEOUS EQUATIONS:

NO SOLUTIONS OR AN

INFINITE NUMBER.
CHANGE OF BASIS.
Prof. N. Harnew
University of Oxford
MT 2012

Outline: 13. SIMULTANEOUS EQUATIONS: NO SOLUTIONS OR AN INFINITE NUMBER. CHANGE OF BASIS.

13.1 Solutions do not exist
13.1.1 Case $1 \&$ example
13.1.2 Case 2 \& example
13.2 An infinite number of solutions
13.2.1 Case 1 \& example
13.2.2 Case 2 : Homogeneous equations
13.3 CHANGE OF BASIS
13.3.1 Change of basis in matrix form

13.1 Solutions do not exist

- Recall: 3 simultaneous linear equations:

$$
\begin{array}{r}
\begin{aligned}
a_{11} x_{1} & +a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
a_{21} x_{1} & +a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
a_{31} x_{1} & +a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned} \\
\text { i.e. } A x=b, \quad\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
\end{array}
$$

- Solutions do not exist if:
- $|A|=0$ and $\underline{\mathbf{b}} \neq 0$ and
[Rank of coefficient matrix] < [Rank of augmented matrix]
- i.e. $|A|=0$ and any of Cramer's determinants are not equal to zero (*)
${ }^{(*)}$ since it is the Cramer's determinants (either $=0$ or $\neq 0$) which then determine the rank of the augmented matrix.

13.1.1 Case 1

- Lines of intersection of the planes are parallel to each other.

$$
\begin{gather*}
\text { Case 1: Example } \\
2 x+3 y+4 z=1 \tag{3}\\
x+2 y+2 z=2 \tag{4}\\
-x+y-2 z=3 \\
|A|=\left|\begin{array}{ccc}
2 & 3 & 4 \\
1 & 2 & 2 \\
-1 & 1 & -2
\end{array}\right|=(2 \times-6)+0+(4 \times 3)=0
\end{gather*}
$$

- Rank of coefficient matrix = 2

$$
\text { Get rank of augmented matrix }\left(\begin{array}{ccc|c}
2 & 3 & 4 & 1 \tag{5}\\
1 & 2 & 2 & 2 \\
-1 & 1 & -2 & 3
\end{array}\right)
$$

First Cramer's determinant : $\left|\begin{array}{ccc}1 & 3 & 4 \\ 2 & 2 & 2 \\ 3 & 1 & -2\end{array}\right|=-6+(3 \times 10)+(4 \times-4)=8 \neq 0$

- Rank of augmented matrix $=3$ Hence, [Rank of coefficient matrix] $<$ [Rank of augmented matrix]

No solution

13.1.2 Case 2

- Two of the planes are parallel making the equations inconsistent.

Case 2 : Example

$$
\begin{gather*}
2 x+3 y+4 z=1 \tag{1}\\
x+2 y+2 z=2 \\
4 x+6 y+8 z=10
\end{gather*}
$$

- By inspection, planes defined by Equ's (1) and (3) are parallel with different perpendicular distances from origin.
- Inconsistent equations, no solution is possible.

$$
\begin{align*}
& |A|=\left|\begin{array}{lll}
2 & 3 & 4 \\
1 & 2 & 2 \\
4 & 6 & 8
\end{array}\right|=2 \times 4+0+4 \times-2=0 \tag{8}\\
& \text { First Cramer's determinant }=\left|\begin{array}{ccc}
1 & 3 & 4 \\
2 & 2 & 2 \\
10 & 6 & 8
\end{array}\right| \neq 0 \tag{9}
\end{align*}
$$

13.2 An infinite number of solutions

$$
\text { 13.2.1 Case } 1
$$

$$
\begin{gather*}
A x=b \\
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \tag{10}
\end{gather*}
$$

An infinite number of solutions if:

- $|A|=0$ and $\underline{\mathbf{b}} \neq 0$ and
[Rank of coefficient matrix] $=$ [Rank of augmented matrix]
- i.e. $|A|=0$ and Cramer's determinants are all zero.

Then EITHER -

One of the equations is not unique:

$$
\begin{array}{lc}
& 2 x+3 y+z=7 \tag{1}\\
\text { Example } & x+2 y+3 z=6 \\
& 4 x+6 y+2 z=14
\end{array}
$$

- 3 unknowns, Equ (3) is multiple of Equ (1) and is redundant \Rightarrow system is under-constrained.

- These equations represent the intersection of two planes, with a common line $5 x+7 y=15=3 y+15 z$. Hence infinite number of solutions.

OR

All three planes meet on a common line:

Example

$2 x+3 y+4 z$	$=2$
$x+2 y+2 z$	$=1$
$-x+y-2 z$	$=-1$

- $|A|=\left|\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 2 \\ -1 & 1 & -2\end{array}\right|$

$$
=2 \times(-6)-3 \times 0+4 \times 3=0
$$

- 3rd Cramer's determinant

$$
\begin{aligned}
& \Delta_{z}=\left|\begin{array}{ccc}
2 & 3 & 2 \\
1 & 2 & 1 \\
-1 & 1 & -1
\end{array}\right| \\
& =2 \times(-3)-3 \times 0+2 \times 3=0 \\
& \text { - Also } \Delta_{x}=\Delta_{y}=0
\end{aligned}
$$

- All three planes meet on a common line because:
- $|A|=0$
- All Cramer's determinants are zero
- AND all the equations are unique.

13.2.2 Case 2: Homogeneous equations

- $|A|=0$ and $\underline{b}=0$

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=0 \\
& a_{21} x+a_{22} y+a_{23} z=0 \\
& a_{31} x+a_{32} y+a_{33} z=0
\end{aligned}
$$

- $\underline{\mathbf{b}}=0$ gives the trivial solution $(x, y, z)=(0,0,0)$ unless $|A|=0$
- Three planes meet on a common line passing through the origin. Only the ratios $x / y, x / z, y / z$ can be found.
- Example

$$
\begin{gather*}
2 x+3 y+4 z=0 \tag{1}\\
x+2 y+2 z=0 \\
-x+y-2 z=0
\end{gather*}
$$

- $|A|=0$ and $\underline{\mathbf{b}}=0$
- Intersection: a line through the origin $\rightarrow \quad y=0, x=-2 z$
[Trivially found \rightarrow add Eq (2) \& (3), then substitute for y.]

13.3 CHANGE OF BASIS

- A general vector $|\mathrm{x}\rangle$ in N-dimensional vector space is represented by a sum of base vectors $\left|\mathbf{e}_{\mathbf{i}}\right\rangle$

$$
|\mathbf{x}\rangle=\sum_{i=1}^{N} x_{i}\left|\mathbf{e}_{\mathbf{i}}\right\rangle \quad \rightarrow \text { Equ (*) }
$$

where x_{i} are the coefficients of $|\mathbf{x}\rangle$ w.r.t the basis.

- Consider a change of basis vectors to $\left|\mathbf{e}_{\mathbf{j}}^{\prime}\right\rangle$ (e.g. transformation to a different coordinate system)
- The prime basis will be related to the un-primed basis by a set of transformation coefficients $S_{i j}$

$$
\left|\mathbf{e}_{\mathbf{j}}^{\prime}\right\rangle=\sum_{i=1}^{N} S_{i j}\left|\mathbf{e}_{\mathbf{i}}\right\rangle
$$

- The vector must be the same (i.e. length, direction) whether its represented in basis $\left|\mathbf{e}_{\mathbf{i}}\right\rangle$ or $\left|\mathbf{e}_{\mathbf{i}}^{\prime}\right\rangle$, hence

$$
\sum_{i=1}^{N} x_{i}\left|\mathbf{e}_{\mathbf{i}}\right\rangle=\sum_{j=1}^{N} x_{j}^{\prime}\left|\mathbf{e}_{\mathbf{j}}^{\prime}\right\rangle=\sum_{j=1}^{N} x_{j}^{\prime} \sum_{i=1}^{N} S_{i j}\left|\mathbf{e}_{\mathbf{i}}\right\rangle
$$

where x_{j}^{\prime} are the components of $|\mathbf{x}\rangle$ in basis $\left|\mathbf{e}^{\prime}\right\rangle$.

- Since the x_{j}^{\prime} and $S_{i j}$ are just numbers, we can change order of summation:

$$
|\mathbf{x}\rangle=\sum_{i=1}^{N} \sum_{j=1}^{N} S_{i j} x_{j}^{\prime}\left|\mathbf{e}_{\mathbf{i}}\right\rangle
$$

- Comparing with Equ (${ }^{*}$) : (i.e. $\left.|\mathbf{x}\rangle=\sum_{i=1}^{N} x_{i}\left|\mathbf{e}_{\mathbf{i}}\right\rangle\right)$

$$
\rightarrow \quad x_{i}=\sum_{j=1}^{N} S_{i j} x_{j}^{\prime}
$$

Hence the components of the vector transform in the same way, but inversely, to the base vectors themselves (which ensures $|\mathbf{x}\rangle$ is unchanged by the transformation).

13.3.1 Change of basis in matrix form

- We can write the transformation of the base vectors in matrix form:

$$
\left|\mathbf{e}^{\prime}\right\rangle=S|\mathbf{e}\rangle
$$

where S is the transformation matrix.

- Since the basis vectors are linearly independent $\operatorname{det}(S)$ and hence S^{-1} will exist. Hence $\quad S^{-1}\left|\mathbf{e}^{\prime}\right\rangle=S^{-1} S|\mathbf{e}\rangle \quad \rightarrow \quad|\mathbf{e}\rangle=S^{-1}\left|\mathbf{e}^{\prime}\right\rangle$
- This is the inverse transformation which transforms $\left|\mathbf{e}^{\prime}\right\rangle$ back to $|\mathbf{e}\rangle$, leaving the base vectors unchanged by the two successive transformations.
- Conversely vector x in $|\mathbf{e}\rangle$ is represented in $\left|\mathbf{e}^{\prime}\right\rangle$ by

$$
x^{\prime}=S^{-1} x \quad \text { with inverse transform } \quad x=S x^{\prime}
$$

