Classical Mechanics

LECTURE 11:

NEWTON'S SECOND LAW

AND VARIABLE MASS
Prof. N. Harnew
University of Oxford
HT 2017

OUTLINE : 11. NEWTON'S SECOND LAW AND VARIABLE MASS

Intro : programme for Hilary term (20 lectures)
11.1 Variable mass : a body acquiring mass
11.2 Example - the raindrop
11.3 Ejecting mass : the rocket equation
11.4 The rocket : horizontal launch

Programme for Hilary term (20 lectures)

- Lectures 1-5

Rocket motion. Motion in B and E fields

- Lectures 6-10

Central forces (orbits)

- Lectures 11-15

Rotational dynamics (rigid body etc)

- Lectures 16-20

Lagrangian dynamics

- Plus 4 problem sets for your enjoyment

11.1 Variable mass : a body acquiring mass

- A body of mass m has velocity v. In time δt it it acquires mass δm, which is moving along v direction with velocity u
- The change in mass m is $m+\delta m$,

AFTER
 the change in velocity v is $v+\delta v$

- Case 1: No external force. Change of momentum Δp

$$
\Delta p=\underbrace{(m+\delta m)(v+\delta v)}_{\text {After }}-\underbrace{(m v+u \delta m)}_{\text {Before }}=0
$$

- $m v+m \delta v+v \delta m+\underbrace{\delta m \delta v}_{\text {lgnore }}-m v-u \delta m=m \delta v+(v-u) \delta m=0$
- Divide by δt (time over which mass acquisition occurs) :

$$
\frac{\Delta p}{\delta t}=m \frac{\delta v}{\delta t}+\underbrace{(v-u)} \frac{\delta m}{\delta t}=0
$$

Relative velocity, w

- As $\delta t \rightarrow 0, m \frac{d v}{d t}+w \frac{d m}{d t}=0$ (in this case $\frac{d v}{d t}$ is -ve as expected)

A body acquiring mass - with external force

- Case 2: Application of an external force F
- NII : change of momentum $=\Delta p=F \delta t=m \delta v+w \delta m$
as before, where $w=(v-u)$
- Divide by δt and let $\delta t \rightarrow 0$

$$
m \frac{d v}{d t}+w \frac{d m}{d t}=F
$$

Note: ONLY in the case when $u=0$ does $\frac{d}{d t}(m v)=F$

11.2 Example - the raindrop

An idealised raindrop has initial mass m_{0}, is at height h above ground and has zero initial velocity. As it falls it acquires water (added from rest) such that its increase in mass at speed v is given by $d m / d t=b m v$ where b is a constant. The air resistance is of the form $k m v^{2}$ where k is a constant.

- Formulate the equation of motion :
- $m \frac{d v}{d t}+w \frac{d m}{d t}=F$
$\rightarrow m \frac{d v}{d t}+w \frac{d m}{d t}=m g-k m v^{2}$
- $w=v($ since $u=0) ; \quad \frac{d m}{d t}=b m v$
- $\frac{d v}{d t}+(b+k) v^{2}=g$

- Terminal velocity :
- $\frac{d v}{d t}=0 \rightarrow v_{T}=\sqrt{\frac{g}{b+k}}$

The raindrop, continued

- Calculate raindrop mass vs. distance
- $\frac{d m}{d t}=b m v$
- $\frac{d m}{d x}=\frac{d m}{d t} \frac{d t}{d x}=\frac{b m v}{v}=b m$
$\rightarrow \frac{d m}{m}=b d x$
Integrate : $\left[\log _{e} m\right]_{m_{0}}^{m}=[b x]_{0}^{x}$
- $m=m_{0} \exp (b x)$

(Mass grows exponentially with x)
- What is its speed at ground level ?
- $\frac{d v}{d t}+(b+k) v^{2}=g \rightarrow \frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}$
- $\int_{0}^{v_{h}} \frac{v d v}{g-(b+k) v^{2}}=\int_{0}^{h} d x \rightarrow h=\left[-\left(\frac{\log _{e}\left(g-(b+k) v^{2}\right)}{2(b+k)}\right)\right]_{0}^{v_{h}}$
- Solving :

$$
v_{h}=\sqrt{\frac{g}{b+k}[1-\exp (-2 h(b+k))]}
$$

11.3 Ejecting mass : the rocket equation

- A body of mass m has velocity v. In time δt it ejects mass δm, with relative velocity w to the body
- Change of momentum $\Delta p=$ $\underbrace{\delta m(v-w)+(m-\delta m)(v+\delta v)}_{-\underbrace{m v}_{\text {Before }}}$
$=v \delta m-w \delta m+m v+m \delta v-$
$v \delta m-\underbrace{\delta m \delta v}_{\text {Ignore }}-m v$

BEFORE IN CM

- With external force : $F=\frac{\Delta p}{\delta t}=m \frac{\delta v}{\delta t}-w \frac{\delta m}{\delta t}$
- As $\delta t \rightarrow 0, \frac{\delta v}{\delta t} \rightarrow \frac{d v}{d t} \& \frac{\delta m}{\delta t} \rightarrow-\frac{d m}{d t}$ (as $\frac{\delta m}{\delta t}$ is +ve but $\frac{d m}{d t}$ is -ve)
- Hence, again,

$$
F=m \frac{d v}{d t}+w \frac{d m}{d t}
$$

the rocket equation

11.4 The rocket : horizontal launch

- Rocket equation:
$m \frac{d v}{d t}+w \frac{d m}{d t}=F=0$ (no gravity)
- Assume mass is ejected with constant relative velocity to the rocket w
- $m d v=-w d m \rightarrow d v=-w \frac{d m}{m}$
- Initial/final velocity $=v_{i}, v_{f}$ Initial/final mass $=m_{i}, m_{f}$
- $\int_{v_{i}}^{v_{f}} d v=-w \int_{m_{i}}^{m_{f}} \frac{d m}{m}$
- $v_{f}-v_{i}=w \log _{e}\left(m_{i} / m_{f}\right)$

This expression gives the dependence of rocket velocity as a function of its mass

