LECTURE 11:

THE INVERSE AND RANK OF A
MATRIX AND SIMULTANEOUS
EQUATIONS IN MATRIX FORM
Prof. N. Harnew
University of Oxford

MT 2012

Outline: 11. THE INVERSE AND RANK OF A MATRIX AND SIMULTANEOUS EQUATIONS IN MATRIX FORM

11.1 Prescription for finding the inverse of a matrix
11.2 Prooffor a general 3×3 matrix
11.3 Inverse of 2×2 matrix
11.3.1 Example
11.4 Rank of a matrix
11.4.1 Example
11.5 Simultaneous equations in matrix form
11.6 Unique solutions to simultaneous equations
11.6.1 Geometrical interpretation
11.1 Prescription for finding the inverse of a matrix

$$
\text { For a square matrix } A: \quad A A^{-1}=A^{-1} A=1
$$

Prescription to find A^{-1} :

1. Start from a square matrix A

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

2. Form the matrix of cofactors of A : $C=\left(\begin{array}{cccc}C_{11} & C_{12} & \cdots & C_{1 n} \\ C_{21} & C_{22} & \cdots & C_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ C_{n 1} & C_{n 2} & \cdots & C_{n n}\end{array}\right)$
where cofactor $C_{i j}=[$ minor $] \times[s i g n]=\mathrm{M}_{\mathrm{ij}} \times(-1)^{(\mathrm{i}+\mathrm{j})}$ as before.
3. Take the transpose $C \Rightarrow C^{T} \quad$ (the adjugate matrix)
4. Divide by the determinant of A.

Then the elements of A^{-1} are

$$
\left(A^{-1}\right)_{i k}=\left(C^{T}\right)_{i k} /|A|=C_{k i} /|A|
$$

If $|A|=0$, the matrix the matrix has no inverse (i.e. singular).

11.2 Prooffor a general 3×3 matrix

- Start from $\quad A^{-1} A=I$
- Taking a general element of the LHS $\left(A^{-1} A\right)_{i j}=\sum_{k}\left(A^{-1}\right)_{i k} A_{k j}$
- Now we assume the postulate $\left(A^{-1}\right)_{i k}=\left(C^{T}\right)_{i k} /|A|$
- Hence $\left(A^{-1} A\right)_{i j}=\quad \sum_{k} \frac{C_{k i}}{|A|} A_{k j}=I_{i j}=\delta_{i j} \quad \rightarrow$ Eqn (*)
where $\delta_{i j}$ is the Kronecker delta ($\delta_{i j}=1$ for $i=j ;=0$ for $i \neq j$)
- What we are going to do from here: Consider a general 3×3 matrix A and show that Equ (*) is satisfied for both diagonal and off-diagonal elements in turn.

The diagonal elements

- Take the general 3×3 matrix:

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{3}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

- Referring to Equ (*), consider $\sum_{k} C_{k i} A_{k j} /|A|$ for diagonal elements $i=j$. Take as a specific example $i=j=1$

$$
\frac{\sum_{k} C_{k 1} A_{k 1}}{|A|}=\left(C_{11} a_{11}+C_{21} a_{21}+C_{31} a_{31}\right) /|A|
$$

- But $\sum_{k} C_{k 1} A_{k 1}$ is the determinant from the first column

$$
=a_{11} \times\left|\begin{array}{ll}
a_{22} & a_{23} \tag{4}\\
a_{32} & a_{33}
\end{array}\right|-a_{21} \times\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{31} \times\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|=|A|
$$

- i.e. when $i=j=1, \frac{\sum_{k} C_{k i} A_{k i}}{|A|}=\frac{|A|}{|A|}=1=\delta_{i i} \quad$ (cf. Equ (*)) Also true had we taken $i=j=2$ or $i=j=3$.

So the diagonal elements are consistent with the postulate.

The off-diagonal elements

- Next consider $\sum_{k} C_{k i} A_{k j} /|A|$ for $i \neq j$ in Equ (*):
- Take a specific example ($i=1, j=2$)

$$
\begin{align*}
& \sum_{k} C_{k 1} A_{k 2}=C_{11} a_{12}+C_{21} a_{22}+C_{31} a_{32} \\
& \quad=a_{12} \times\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{22} \times\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{32} \times\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \tag{5}
\end{align*}
$$

- Next re-create the full determinant:

$$
\left|\begin{array}{lll}
a_{12} & a_{12} & a_{13} \tag{6}\\
a_{22} & a_{22} & a_{23} \\
a_{32} & a_{32} & a_{33}
\end{array}\right|=0 \text { [since columns } 1 \text { and } 2 \text { have equal elements]. }
$$

- So $\sum_{k} C_{k i} A_{k j} /|A|=0$ for $i \neq j$ (cf. Equ (${ }^{*}$) $\Rightarrow \delta_{i j}=0$). Also true had we taken any values $i \neq j$.

So the non-diagonal elements are also consistent with the postulate.

- We conclude that as a general result, $A^{-1}=C^{\top} /|A|$

11.3 Inverse of 2×2 matrix

- Start with matrix A :

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \tag{7}\\
a_{21} & a_{22}
\end{array}\right)
$$

- The determinant is $|A|=\left(a_{11} a_{22}-a_{12} a_{21}\right)$
- The matrix of cofactors is:

$$
C=\left(\begin{array}{cc}
a_{22} & -a_{21} \tag{8}\\
-a_{12} & a_{11}
\end{array}\right)
$$

- The inverse of A is

$$
A^{-1}=C^{T} /|A|=\frac{1}{\left(a_{11} a_{22}-a_{12} a_{21}\right)}\left(\begin{array}{cc}
a_{22} & -a_{12} \tag{9}\\
-a_{21} & a_{11}
\end{array}\right)
$$

- This is general for a 2×2 matrix and is easy to remember.

11.3.1 Example

$$
\begin{gather*}
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \tag{10}\\
A^{-1}=\frac{1}{(1 \times 4-2 \times 3)}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right) \tag{11}\\
=-\frac{1}{2} \times\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right) \tag{12}
\end{gather*}
$$

Check:

$$
\begin{gather*}
A^{-1} A=\left(\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \tag{13}\\
=\left(\begin{array}{cc}
-2 \times 1+1 \times 3 & -2 \times 2+1 \times 4 \\
3 / 2 \times 1-1 / 2 \times 3 & 3 / 2 \times 2-4 \times 1 / 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { as required. } \tag{14}
\end{gather*}
$$

11.4 Rank of a matrix

- Two equivalent definitions:
- The rank of an $m \times n$ matrix is defined as the number of linear independent rows or columns in the matrix (whichever is the smallest).
- Alternatively the rank of an $m \times n$ matrix is equal to the size of the largest square sub-matrix that is contained in the m rows and n columns of the matrix whose determinant is non-zero.
- Hence the rank of matrix A is always \leq to the smaller of m or n.
- For an $n \times n$ square matrix, $|A|=0$ unless the rank $=n$.

11.4.1 Example

$$
\begin{array}{r}
3 \times 3 \text { matrix } \quad A=\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 2 \\
4 & 1 & 3
\end{array}\right) \\
|A|=\left|\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 2 \\
4 & 1 & 3
\end{array}\right|=1 \times(-2)-1 \times(6-8)+0=0 \tag{16}
\end{array}
$$

However a number of sub-matrices are non-zero:

$$
\left|\begin{array}{ll}
1 & 1 \tag{17}\\
2 & 0
\end{array}\right|=-2, \quad\left|\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right|=-3, \quad\left|\begin{array}{ll}
0 & 2 \\
1 & 3
\end{array}\right|=-2
$$

Hence the rank of this matrix is 2

11.5 Simultaneous equations in matrix form

- Use matrix methods to solve simultaneous linear equations:

$$
\begin{array}{ccccccc}
a_{11} x_{1} & +a_{12} x_{2} & +\cdots & +a_{1 n} x_{n} & =b_{1} \tag{18}\\
a_{21} x_{1} & +a_{22} x_{2} & +\cdots & +a_{2 n} x_{n} & =b_{2} \\
\ldots & + & \cdots & + & + & \cdots & = \\
a_{m 1} x_{1} & +a_{m 2} x_{2} & +\cdots & +a_{m n} x_{n} & =b_{m}
\end{array}
$$

where $a_{i j}$ and b_{i} have known values, x_{i} are unknown.

- If the b_{i} are all zero, then the system of equations is called homogeneous, otherwise its inhomogeneous.
- We can write the set of equations as a matrix equation: $A x=b, \quad(A$ is called the coefficient matrix $)$. i.e.

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{19}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{m}
\end{array}\right)
$$

- We can define the augmented matrix

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \tag{20}\\
a_{21} & a_{22} & \cdots & a_{1 n} & b_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

11.6 Unique solutions to simultaneous equations

- We have the case of n simultaneous equations in n unknowns: condition for the solution to be unique:
- [Rank of coefficient matrix] = [Rank of augmented matrix] = = [Number of unknowns]
- OR alternatively for the coefficient matrix $|A| \neq 0$ and $\underline{b} \neq 0$.
- Note that $|A| \neq 0$ and $\underline{\mathbf{b}}=\mathbf{0}$ gives the trivial solution $\left(x_{1}, x_{2}, \cdots, x_{n}\right)=(0,0, \cdots, 0)$.
- From here consider $n=3$

$$
\begin{align*}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \tag{21}\\
& a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{align*}
$$

11.6.1 Geometrical interpretation

- The geometrical representation is 3 planes intersecting at a single point giving a unique solution.

- i.e. the scalar triple product $\left(a_{11}, a_{12}, a_{13}\right) \cdot\left[\left(a_{21}, a_{22}, a_{23}\right) \times\left(a_{31}, a_{32}, a_{33}\right)\right] \neq 0$
- For the trivial solution $|A| \neq 0$ and $\underline{\mathbf{b}}=\mathbf{0}$, planes intersect at $(0,0,0)$

