Classical Mechanics

LECTURE 10:

RESISTED MOTION
Prof. N. Harnew
University of Oxford
MT 2016

OUTLINE : 10. RESISTED MOTION

10.1 Resisted motion and limiting speed
10.2 Air resistance
10.3 Example 1: Resistive force, $F_{R} \propto v$
10.4 Example 2: Resistive force, $F_{R} \propto v^{2}$
10.4.1 Work done on the body by the force for $F_{R} \propto v^{2}$

10.1 Resisted motion and limiting speed

- Newton II: $m \frac{d v}{d t}=F_{\text {ext }}+F_{R}$ where $F_{\text {ext }}$ is the external force and F_{R} is a resistive force
- If $F_{\text {ext }}=0$ and $F_{R} \propto$ velocity, then $v \propto \exp (-\alpha t)$ (see Lecture 4)
- If $F_{\text {ext }} \neq 0$ and e.g. $F_{R} \propto-v^{n}$ then there exists a limiting speed corresponding to $\frac{d v}{d t}=0$ that satisfies $F_{R}=-F_{\text {ext }}$

10.2 Air resistance

$$
F_{R}=\underbrace{a v}_{\text {Laminar flow }}+\underbrace{b v^{2}}_{\text {Turbulent flow }}
$$

- Laminer flow : Stoke's Law $F=6 \pi \eta r v$
r is the radius of the sphere
v is the velocity of the sphere

η is the viscosity of the fluid
- Turbulent flow : S $F=\frac{1}{2} \pi \rho C_{d} r^{2} v^{2}$ ρ is the density of the fluid
C_{d} is the drag coefficient (e.g. for a
 smooth sphere $C_{d} \sim 0.47$

10.3 Example 1 : Resistive force, $F_{R} \propto v$

- Body fired vertically upwards under gravity \rightarrow air resistance \propto velocity
$\rightarrow v=v_{0} \& x=0$ at $t=0$
- Equation of motion: $m \frac{d v}{d t}=-m g-\beta v$
- $\int_{v_{0}}^{v} \frac{d v}{g+\alpha v}=-\int_{0}^{t} d t$ where $\alpha=\frac{\beta}{m}$

- $\left[{ }_{\alpha}^{1} \log _{e}(g+\alpha v)\right]_{v_{0}}^{v}=[-t]_{0}^{t}$
$-\log _{e}\left(\frac{(g+\alpha v)}{\left(g+\alpha v_{0}\right)}\right)=-\alpha t \rightarrow 1+\frac{\alpha v}{g}=\left(1+\frac{\alpha v_{0}}{g}\right) \exp (-\alpha t)$

$$
v=\frac{g}{\alpha}\left[\left(1+\frac{\alpha v_{0}}{g}\right) \exp (-\alpha t)-1\right]
$$

- Terminal (limiting) velocity: $t \rightarrow \infty, v_{T} \rightarrow-\frac{g}{\alpha}$
- Can show by expansion, as $\alpha \rightarrow 0, v \rightarrow v_{0}$ - gt

Maximum height and distance travelled for $F_{R} \propto v$

- $v=\frac{g}{\alpha}\left[\left(1+\frac{\alpha v_{0}}{g}\right) \exp (-\alpha t)-1\right]$
- At maximum height $\rightarrow v=0, t=t_{\text {max }}$

$$
\begin{array}{r}
\rightarrow \exp \left(-\alpha t_{\max }\right)=\left(1+\frac{\alpha v_{0}}{g}\right)^{-1} \\
t_{\max }=\frac{1}{\alpha} \log _{e}\left(1+\frac{\alpha v_{0}}{g}\right)
\end{array}
$$

Can expand log to show :

$$
\begin{aligned}
& \text { X } \\
& -m g-\beta v
\end{aligned}
$$ $t_{\text {max }} \rightarrow \frac{v_{0}}{g}$ when $\alpha \rightarrow 0$

- Distance travelled:
- $x=\int_{0}^{t} \frac{g}{\alpha}\left[\left(1+\frac{\alpha v_{0}}{g}\right) \exp (-\alpha t)-1\right] d t$

$$
=\frac{g}{\alpha}\left[-\frac{1}{\alpha}\left(1+\frac{\alpha v_{0}}{g}\right) \exp (-\alpha t)-t\right]_{0}^{t}
$$

$$
x=\frac{g}{\alpha}\left[\left(\frac{1}{\alpha}\left(1+\frac{\alpha v_{0}}{g}\right)(1-\exp (-\alpha t))-t\right]\right.
$$

Can show by expansion $x \rightarrow v_{0} t-\frac{1}{2} g t^{2}$ when $\alpha \rightarrow 0$

10.4 Example 2: Resistive force, $F_{R} \propto v^{2}$

- Body falls vertically downwards under gravity with air resistance $\propto\left[\right.$ velocity ${ }^{2}, v=0, x=0$ at $t=0$
- Equation of motion: $m \frac{d v}{d t}=m g-\beta v^{2}$
- Terminal velocity when $\frac{d v}{d t}=0: v_{T}=\sqrt{\frac{m g}{\beta}}$

- Equation of motion becomes $\frac{d v}{d t}=g\left(1-v^{2} / v_{T}^{2}\right)$
- Integrate $\int_{0}^{v} \frac{d v}{g\left(1-v^{2} / v_{T}^{2}\right)}=\int_{0}^{t} d t$
- Standard integral : $\int \frac{1}{1-z^{2}} d z=\frac{1}{2} \log _{e}\left(\frac{1+z}{1-z}\right)$
- $\left[\frac{v_{T}}{2 g} \log _{e}\left(\frac{1+v / v_{T}}{1-v / v_{T}}\right)\right]_{0}^{v}=t \rightarrow \frac{1+v / v_{T}}{1-v / v_{T}}=\exp (t / \tau)$, where $\tau=\frac{v_{T}}{2 g}$ $\rightarrow\left(1-\frac{v}{v_{T}}\right)=\left(1+\frac{v}{v_{T}}\right) \exp \left(-\frac{t}{\tau}\right)$
Velocity as a function of time:

$$
V=V_{T}\left[\frac{1-\exp (-t / \tau)}{1+\exp (-t / \tau)}\right]
$$

Velocity as a function of distance for $F_{R} \propto v^{2}$

- Equation of motion: $\frac{d v}{d t}=g\left(1-v^{2} / v_{T}^{2}\right)$
- Write $\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}$
- $\int_{0}^{v} \frac{v d v}{g\left(1-v^{2} / v_{T}^{2}\right)}=\int_{0}^{x} d x$

- $\left[-\frac{v_{T}^{2}}{2 g} \log _{e}\left(1-v^{2} / v_{T}^{2}\right)\right]_{0}^{v}=x$
$\rightarrow\left(1-v^{2} / v_{T}^{2}\right)=\exp \left(-x / x_{T}\right) \quad$, where $x_{T}=\frac{v_{T}^{2}}{2 g}$

$$
v^{2}=v_{T}^{2}\left[1-\exp \left(-x / x_{T}\right)\right]
$$

To get x vs. t integrate again : $\rightarrow \int_{0}^{t} d t=\int_{0}^{x} \frac{d x}{v}$
10.4.1 Work done on the body by the force for $F_{R} \propto v^{2}$

- Equation of motion: $m \frac{d v}{d t}=m g-\beta v^{2}$
- Work done:

$$
\int F d x=\underbrace{\int_{0}^{x} m g d x}_{\text {Conservative }}-\underbrace{\int_{0}^{x} \beta v^{2} d x}_{\text {Dissipative }}
$$

- Conservative term : Work done $=m g x$

- Dissipative term : Work done

$$
\begin{array}{ll}
=-\int_{0}^{x} \beta v^{2} d x=-\int_{0}^{x} \beta v_{T}^{2}\left[1-\exp \left(-x / x_{T}\right)\right] d x & v_{T}^{2}=\frac{m g}{\beta} \\
=-\beta v_{T}^{2}[x+\underbrace{x_{T}\left(\exp \left(-x / x_{T}\right)-1\right)}_{=-x_{T} v^{2} / v_{T}^{2}}] & x_{T}=\frac{v_{T}^{2}}{2 g} \\
=-\beta v_{T}^{2}\left(x-v^{2} / 2 g\right)=-m g\left[x-v^{2} / 2 g\right] &
\end{array}
$$

Energy dissipated $=\frac{1}{2} m v^{2}-m g x$
As expected.

