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OUTLINE : 10. RESISTED MOTION

10.1 Resisted motion and limiting speed

10.2 Air resistance

10.3 Example 1 : Resistive force, FR ∝ v

10.4 Example 2: Resistive force, FR ∝ v2

10.4.1 Work done on the body by the force for FR ∝ v2
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10.1 Resisted motion and limiting speed

I Newton II: m dv
dt = Fext + FR where Fext is the

external force and FR is a resistive force

I If Fext = 0 and FR ∝ velocity, then v ∝ exp(−αt)
(see Lecture 4)

I If Fext 6= 0 and e.g. FR ∝ −vn then there exists a
limiting speed corresponding to dv

dt = 0 that satisfies
FR = −Fext
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10.2 Air resistance

FR = av︸︷︷︸
Laminar flow

+ bv2︸︷︷︸
Turbulent flow

I Laminer flow : Stoke’s Law
F = 6πηrv

r is the radius of the sphere

v is the velocity of the sphere

η is the viscosity of the fluid
I Turbulent flow : S F = 1

2πρCd r2v2

ρ is the density of the fluid

Cd is the drag coefficient (e.g. for a
smooth sphere Cd ∼ 0.47
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10.3 Example 1 : Resistive force, FR ∝ v
I Body fired vertically upwards under

gravity→ air resistance ∝ velocity

→ v = v0 & x = 0 at t = 0
I Equation of motion: m dv

dt = −mg − βv

I
∫ v

v0

dv
g+αv = −

∫ t
0 dt where α = β

m

I
[

1
α
loge(g + αv)

]v
v0
= [−t ] t

0

I loge

(
(g+αv)
(g+αv0)

)
= −αt → 1+αv

g =
(

1 + αv0
g

)
exp(−αt)

v = g
α

[
(1 + αv0

g )exp(−αt)− 1
]

I Terminal (limiting) velocity: t →∞ , vT → − g
α

I Can show by expansion, as α→ 0 , v → v0 − gt
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Maximum height and distance travelled for FR ∝ v
I v = g

α

[
(1 + αv0

g ) exp(−αt)− 1
]

I At maximum height→ v = 0, t = tmax

→ exp(−αtmax ) = (1 + αv0
g )−1

tmax = 1
α loge

(
1 + αv0

g

)
Can expand log to show :
tmax → v0

g when α→ 0

I Distance travelled :
I x =

∫ t
0

g
α

[
(1 + αv0

g ) exp(−αt)− 1
]

dt

= g
α

[
− 1
α(1 + αv0

g ) exp(−αt)− t
]t

0

x = g
α

[(
1
α(1 + αv0

g )(1− exp(−αt)
)
− t
]

Can show by
expansion
x → v0t − 1

2gt2

when α→ 0
6



10.4 Example 2: Resistive force, FR ∝ v2

I Body falls vertically downwards under gravity with
air resistance ∝ [velocity]2, v = 0, x = 0 at t = 0

I Equation of motion: m dv
dt = mg − βv2

I Terminal velocity when dv
dt = 0 : vT =

√
mg
β

I Equation of motion becomes dv
dt = g

(
1− v2/v2

T

)
I Integrate

∫ v
0

dv
g(1−v2/v2

T )
=
∫ t

0 dt

I Standard integral :
∫ 1

1−z2 dz = 1
2 loge

(
1+z
1−z

)
I

[
vT
2g loge

(
1+v/vT
1−v/vT

)]v

0
= t → 1+v/vT

1−v/vT
= exp(t/τ) , where τ = vT

2g

→ (1− v
vT

) = (1 + v
vT

) exp(− t
τ )

Velocity as a function of time:

v = vT

[
1−exp(−t/τ)
1+exp(−t/τ)

]
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Velocity as a function of distance for FR ∝ v2

I Equation of motion: dv
dt = g

(
1− v2/v2

T

)
I Write dv

dt = dv
dx

dx
dt = v dv

dx

I
∫ v

0
v dv

g(1−v2/v2
T )

=
∫ x

0 dx

I

[
− v2

T
2g loge

(
1− v2/v2

T

)]v

0
= x

→
(
1− v2/v2

T

)
= exp (−x/xT ) , where xT =

v2
T

2g

v2 = v2
T [1− exp (−x/xT )]

To get x vs. t integrate again : →
∫ t

0 dt =
∫ x

0
dx
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10.4.1 Work done on the body by the force for FR ∝ v2

I Equation of motion: m dv
dt = mg − βv2

I Work done:∫
Fdx =

∫ x

o
mg dx︸ ︷︷ ︸

Conservative

−
∫ x

0
βv2dx︸ ︷︷ ︸

Dissipative

I Conservative term : Work done = mgx

I Dissipative term : Work done
= −

∫ x
0 βv2dx = −

∫ x
0 βv2

T [1− exp(−x/xT )] dx

= −βv2
T [x + xT (exp(−x/xT )− 1)︸ ︷︷ ︸

=−xT v2/v2
T

]

= −βv2
T (x − v2/2g) = −mg[x − v2/2g]

v2
T = mg

β

xT =
v2

T
2g

Energy dissipated = 1
2mv2 −mgx As expected.
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