LECTURE 10:
 DETERMINANTS

Prof. N. Harnew
University of Oxford
MT 2012

Outline: 10. DETERMINANTS

10.1 DETERMINANTS: What is a determinant?
10.2 Evaluating a general $N \times N$ determinant
10.3 Evaluating Det of a 3×3 matrix "rigorously"
10.4 Extend to 4×4
10.5 Properties of determinants
10.6 Evaluate a 4×4 determinant
10.7 The adjugate matrix

10.1 DETERMINANTS: What is a determinant?

- A determinant is a scalar, $\operatorname{det}(A) \equiv|A|$, which is associated with any square matrix A (must be square).
- Start by simply quoting the determinants up to $n=3$:
- for a 1×1 matrix $\Rightarrow \operatorname{det}(A)=A$
- for a 2×2 matrix

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a_{1} & a_{2} \tag{1}\\
b_{1} & b_{2}
\end{array}\right) \equiv\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

- for a 3×3 matrix

$$
\begin{gather*}
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) \equiv\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \tag{2}\\
=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \tag{3}\\
=a_{1} \times\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2} \times\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3} \times\left(b_{1} c_{2}-b_{2} c_{1}\right)
\end{gather*}
$$

10.2 Evaluating a general $N \times N$ determinant

- For an $\mathrm{N} \times \mathrm{N}$ matrix A, for each element $A_{i j}$ we define a minor $M_{i j}$
- $M_{i j}$ is the determinant of the $(\mathrm{N}-1) \times(\mathrm{N}-1)$ matrix obtained from A by deleting row i and column j.
- We also define cofactor $C_{i j}=(-1)^{(i+j)} M_{i j}$ (the "signed" minor of the same element).
- The determinant is then defined as the sum of the products of the elements of any row or column with their corresponding cofactors.

$$
\text { i.e. } \operatorname{det}(A)=\sum_{j=1}^{N} A_{m j} C_{m j}=\sum_{i=1}^{N} A_{i k} C_{i k}
$$

for $A N Y$ row m or column k.

10.3 Evaluating Det of a 3×3 matrix "rigorously"

- Take the 3×3 matrix

$$
|A|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{4}\\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

- First knock out the first row and first column. Then the cofactor $(1,1)$ is:

$$
C_{11}=(-1)^{(1+1)}\left|\begin{array}{ll}
b_{2} & b_{3} \tag{5}\\
c_{2} & c_{3}
\end{array}\right|
$$

- Now get the next cofactor. Knock out the first row and second column:

$$
C_{12}=(-1)^{(1+2)}\left|\begin{array}{ll}
b_{1} & b_{3} \tag{6}\\
c_{1} & c_{3}
\end{array}\right|
$$

- Then knock out the first row and third column:

$$
C_{13}=(-1)^{(1+3)}\left|\begin{array}{ll}
b_{1} & b_{2} \tag{7}\\
c_{1} & c_{2}
\end{array}\right|
$$

- This gives $\operatorname{det}(A)=a_{1} C_{11}+a_{2} C_{12}+a_{3} C_{13}$

More on the Det of a 3×3

- From before: $\operatorname{det}(A)=a_{1} C_{11}+a_{2} C_{12}+a_{3} C_{13}$
- Also, we can trivially show that the determinant is independent of the row or column chosen:
e.g. via the $2^{\text {nd }}$ row: $\operatorname{det}(A)=b_{1} C_{21}+b_{2} C_{22}+b_{3} C_{23}$ or via the $3^{\text {rd }}$ column: $\operatorname{det}(A)=a_{3} C_{13}+b_{3} C_{23}+c_{3} C_{33}$
- These equations are called Laplace expansions (or Laplace developments).

10.4 Extend to 4×4

$$
|A|=\left|\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \tag{8}\\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right|
$$

- Sum over 4 terms of cofactors: $\quad|A|=\sum_{i=1}^{4} a_{i} C_{1 i}$

$$
\begin{aligned}
& =a_{1} \times(-1)^{(1+1)} \times\left|\begin{array}{lll}
b_{2} & b_{3} & b_{4} \\
c_{2} & c_{3} & c_{4} \\
d_{2} & d_{3} & d_{4}
\end{array}\right|+a_{2} \times(-1)^{(1+2)} \times\left|\begin{array}{lll}
b_{1} & b_{3} & b_{4} \\
c_{1} & c_{3} & c_{4} \\
d_{1} & d_{3} & d_{4}
\end{array}\right|+ \\
& +a_{3} \times(-1)^{(1+3)} \times\left|\begin{array}{lll}
b_{1} & b_{2} & b_{4} \\
c_{1} & c_{2} & c_{4} \\
d_{1} & d_{2} & d_{4}
\end{array}\right|+a_{4} \times(-1)^{(1+4)} \times\left|\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3} \\
d_{1} & d_{2} & d_{3}
\end{array}\right|
\end{aligned}
$$

- Evaluating this will be very tedious if not done more efficiently. We strive to reduce elements of columns and/or rows to zero (see later).

10.5 Properties of determinants [1]

1. If we interchange 2 adjacent rows or 2 adjacent columns of A to give B, then $\operatorname{det}(B)=-\operatorname{det}(A)$

$$
\text { e.g. }\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{9}\\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=-\left|\begin{array}{lll}
a_{2} & a_{1} & a_{3} \\
b_{2} & b_{1} & b_{3} \\
c_{2} & c_{1} & c_{3}
\end{array}\right|
$$

2. For a matrix A, the transpose satisfies

$$
\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)
$$

3. For a product of matrices then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det}(A) \times \operatorname{det}(B)
$$

Properties of determinants [2]

4. If B results from multiplying one row or column of A by a scalar λ then $\operatorname{det}(B)=\lambda \times \operatorname{det}(A)$

$$
\text { e.g. } \quad \lambda \times\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{10}\\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & \lambda a_{2} & a_{3} \\
b_{1} & \lambda b_{2} & b_{3} \\
c_{1} & \lambda c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
\lambda c_{1} & \lambda c_{2} & \lambda c_{3}
\end{array}\right| \text { etc. }
$$

5. If I_{n} is an $\mathrm{n} \times \mathrm{n}$ unit matrix and λ a scalar, then

$$
\operatorname{det}\left(I_{n}\right)=1 \text { and } \operatorname{det}\left(\lambda I_{n}\right)=\lambda^{n}
$$

Hence: $\operatorname{det}(\lambda A)=\operatorname{det}\left(\lambda I_{n} A\right)=\operatorname{det}\left(\lambda I_{n}\right) \operatorname{det}(A)=\lambda^{n} \operatorname{det}(A)$

Properties of determinants [3]

6. For a matrix A, the inverse satisfies

$$
\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)
$$

Simple proof:
$1=\operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$
$\rightarrow \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A) \quad$ QED
7. For a matrix A where two or more rows (or columns) are equal or linearly dependent, then $\operatorname{det}(A)=0$
e.g. $\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ \lambda \times a_{1} & \lambda \times a_{2} & \lambda \times a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=0 \quad$ (where λ is a scalar.)

Properties of determinants [4]

8. If B results from adding a multiple of one row to another row, or a multiple of one column to another column, then $\operatorname{det}(B)=\operatorname{det}(A) \quad($ determinant unchanged $)$.

$$
\text { e.g. }\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{12}\\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2}+\lambda \times a_{1} & a_{3} \\
b_{1} & b_{2}+\lambda \times b_{1} & b_{3} \\
c_{1} & c_{2}+\lambda \times c_{1} & c_{3}
\end{array}\right| \quad \text { (where } \lambda \text { is a scalar.) }
$$

10.6 Evaluate a 4×4 determinant

$$
\text { Evaluate }\left|\begin{array}{cccc}
1 & 3 & 0 & 4 \tag{13}\\
3 & 7 & 2 & 9 \\
1 & 0 & 2 & 4 \\
0 & -1 & 4 & 3
\end{array}\right|
$$

Row 2-(3 \times row 1), put answer in row 2

Row 3 - row 1, put answer in row 3

$$
\begin{align*}
& =\left|\begin{array}{cccc}
1 & 3 & 0 & 4 \\
0 & -2 & 2 & -3 \\
1 & 0 & 2 & 4 \\
0 & -1 & 4 & 3
\end{array}\right| \tag{14}\\
& =\left|\begin{array}{cccc}
1 & 3 & 0 & 4 \\
0 & -2 & 2 & -3 \\
0 & -3 & 2 & 0 \\
0 & -1 & 4 & 3
\end{array}\right| \tag{15}
\end{align*}
$$

$$
\text { From previous page }=\left|\begin{array}{cccc}
1 & 3 & 0 & 4 \tag{16}\\
0 & -2 & 2 & -3 \\
0 & -3 & 2 & 0 \\
0 & -1 & 4 & 3
\end{array}\right|
$$

Laplace development of column 1

$$
\begin{align*}
& =(-1)^{(1+1)} \times 1 \times\left|\begin{array}{ccc}
-2 & 2 & -3 \\
-3 & 2 & 0 \\
-1 & 4 & 3
\end{array}\right| \tag{17}\\
& 3 \tag{18}
\end{align*}
$$

Row 3 + row 1, put answer in row 3

$$
=-3 \times(-1)^{(1+3)} \times\left|\begin{array}{ll}
-3 & 2 \tag{19}\\
-3 & 6
\end{array}\right|
$$

Laplace development of column 3

This is easily evaluated:

$$
-3 \times((-3 \times 6)-(2 \times-3))=36
$$

10.7 The adjugate matrix

- The adjugate matrix is found by replacing each element of matrix A by its cofactor and then transposing the matrix. $\operatorname{Adj}(A)_{i j}=C_{i j}^{T}=C_{j i}$
- Note: the adjugate is sometimes called the adjoint, but that terminology is rather ambiguous. "Adjoint" of a matrix normally refers to the Hermitian conjugate $\left(A^{\dagger}\right)$.

