LECTURE 1:
 INTRODUCING VECTORS

Prof. N. Harnew
University of Oxford
MT 2012

OUTLINE : 1. INTRODUCING VECTORS

1.1 Scalars
1.2 Vectors
1.3 Unit vectors
1.4 Vector algebra
1.5 Simple examples

1.1 Scalars

- A scalar is a quantity with magnitude but no direction, any mathematical entity that can be represented by a number.
- Examples: Mass, temperature, energy, charge ...
- Scalar addition, subtraction, division, multiplication are defined by the algebra of the real numbers representing the scalars.
- $M_{\text {total }}=M_{1}+M_{2}, \quad V=I \times R$ etc.

But scalars are not enough if a physical observable has magnitude and direction.

1.2 Vectors

- A vector is a quantity that has both magnitude (i.e. length) and direction. An "arrow" in space.
- Examples: velocity, force, momentum, electric field etc.
- Need a reference frame (coordinate system). Use the Cartesian coordinate system defined by three orthogonal axes (in 3D).
- This is a right-handed rectangular coordinate system: A right threaded screw rotated clockwise through 90° from OX to OY will
 advance in the positive z direction.
- Vector then has magnitude $|\underline{\mathbf{p}}|$ and components (p_{x}, p_{y}, p_{z})
- Convention por \underline{p} or \vec{p}

Vector components in $2 D$

- Projecting the components:

$$
\underline{\mathbf{p}}=\left(p_{x}, p_{y}\right)
$$

- x-component $p_{x}=|\underline{\mathbf{p}}| \cos (\theta)$
- y-component $p_{y}=|\underline{\mathbf{p}}| \sin (\theta)$
- Magnitude $|\underline{\mathbf{p}}|=\sqrt{ }\left(p_{x}^{2}+p_{y}^{2}\right)$ measures the length of a vector.
- Direction $\tan (\theta)=\left(p_{y} / p_{x}\right)$

Vector components in $3 D$

- Projecting the components:

$$
\underline{\mathbf{p}}=\left(p_{x}, p_{y}, p_{z}\right)
$$

- x-component
$p_{x}=|\underline{\mathbf{p}}| \sin (\theta) \cos (\phi)$
- y-component

$$
p_{y}=|\underline{\mathbf{p}}| \sin (\theta) \sin (\phi)
$$

- z-component

$$
p_{z}=|\underline{\mathbf{p}}| \cos (\theta)
$$

- Magnitude $|\underline{\mathbf{p}}|=\sqrt{ }\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)$
- Direction $\tan (\phi)=\left(p_{y} / p_{x}\right)$

$$
\cos (\theta)=\left(p_{z} /|\underline{\mathbf{p}}|\right)
$$

- Two vectors are equal if they have the same magnitude and direction

$$
\underline{\mathbf{a}}=\underline{\mathbf{b}} \text { gives } a_{x}=b_{x}, \quad a_{y}=b_{y}, \quad a_{z}=b_{z}
$$

1.3 Unit vectors

- A unit vector (sometimes called versor) is a vector with magnitude equal to one.
- e.g. Three unit vectors defined by orthogonal components of the Cartesian coordinate system:
- $\underline{\mathbf{i}}=(1,0,0)$, obviously $|\underline{\mathbf{i}}|=1$
- $\mathbf{j}=(0,1,0),|\mathbf{j}|=1$
- $\underline{\overline{\mathrm{k}}}=(0,0,1),|\underline{\mathrm{k}}|=1$
- A unit vector in the direction of general vector $\underline{\mathbf{a}}$ is written $\underline{\hat{\mathbf{a}}}=\underline{\mathbf{a}} /|\underline{\mathbf{a}}|$

- $\underline{\mathbf{a}}$ is written in terms of unit
vectors $\underline{\mathbf{a}}=a_{x} \underline{\mathbf{i}}+a_{y} \underline{\mathbf{j}}+a_{z} \underline{\mathbf{k}}$

1.4 Vector algebra

Sum of two vectors

- To calculate the sum of two vectors $\underline{\mathbf{c}}=\underline{\mathbf{a}}+\underline{\mathbf{b}}$
Triangle rule: Put the second vector nose to tail with the first and the resultant is the vector sum.
- $\underline{\mathbf{c}}=\underline{\mathbf{a}}+\underline{\mathbf{b}}:$ in (x, y, z) components $\left(c_{x}, c_{y}, c_{z}\right)=\left(a_{x}+b_{x}, a_{y}+b_{y}, a_{z}+b_{z}\right)$
- Alternatively $\underline{\mathbf{c}}=\underline{\mathbf{a}}+\underline{\mathbf{b}}$ $c_{x} \underline{\mathbf{i}}+c_{y} \mathbf{j}+c_{z} \underline{\mathbf{k}}=$ $\left(a_{x}+b_{x}\right) \underline{\mathbf{i}}+\left(a_{y}+b_{y}\right) \underline{\mathbf{j}}+\left(a_{z}+b_{z}\right) \underline{\mathbf{k}}$

(the parallelogram rule is completely analagous)

Multiplication of a vector by a scalar

- This gives a vector in the same direction as the original but of proportional magnitude.
- For any scalars α and β and vectors $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$
- $(\alpha \beta) \underline{\mathbf{a}}=\alpha(\beta \underline{\mathbf{a}})=\beta(\alpha \underline{\mathbf{a}})=\underline{\mathbf{a}}(\alpha \beta)$: commutative
- $(\alpha+\beta) \underline{\mathbf{a}}=\alpha \underline{\mathbf{a}}+\beta \underline{\mathbf{a}}:$ distributive
- $\alpha(\underline{\mathbf{a}}+\underline{\mathbf{b}})=\alpha \underline{\mathbf{a}}+\alpha \underline{\mathbf{b}}$

Vector algebra laws

- $\underline{\mathbf{a}}+\underline{\mathbf{b}}=\underline{\mathbf{b}}+\underline{\mathbf{a}}$: commutative law
- $\underline{\mathbf{a}}+(\underline{\mathbf{b}}+\underline{\mathbf{c}})=(\underline{\mathbf{a}}+\underline{\mathbf{b}})+\underline{\mathbf{c}}$: associative law
- Can treat vector equations in same way as ordinary algebra

$$
\underline{\mathbf{a}}+\underline{\mathbf{b}}=\underline{\mathbf{c}} \Rightarrow \underline{\mathbf{a}}=\underline{\mathbf{c}}-\underline{\mathbf{b}}
$$

- Note that vector - $\underline{\mathbf{b}}$ is equal in magnitude to $\underline{\mathbf{b}}$ but in the opposite direction.

$$
\text { So } \underline{\mathbf{a}}-\underline{\mathbf{b}}=\underline{\mathbf{a}}+(-\underline{\mathbf{b}})
$$

1.5 Simple examples

Example 1

Three forces $\underline{\mathbf{F}}_{1}, \underline{\mathbf{F}}_{\mathbf{2}}$ and $\mathbf{F}_{\mathbf{3}}$ act on a particle so that the forces are in equilibrium. Given $\underline{\mathbf{F}}_{1}=(-\underline{\mathbf{i}}+2 \underline{\mathbf{j}}+4 \underline{\mathbf{k}}) \mathrm{N}$ and $\underline{\mathbf{F}}_{2}=(-\underline{\mathbf{i}}-5 \underline{\mathbf{k}}) \mathrm{N}$ find the third force.

- Forces must balance in all 3 directions $\underline{F}_{1}+\underline{F}_{2}+\underline{F}_{3}=0$
- $\underline{F}_{3}=(+2 \underline{\mathbf{i}}-2 \underline{\mathbf{j}}+\underline{\mathbf{k}}) \mathrm{N}$
- $\underline{\mathbf{F}}_{3}$ has magnitude $\left.\sqrt{ }\left(2^{2}+(-2)^{2}+1^{2}\right)\right)=\sqrt{ }(9)=3 \mathrm{~N}$

Example 2

Take a triangle. Point P divides AB in the ratio $\mu: \lambda$. What is the position vector of point \mathbf{P} in terms of $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$?

- $\underline{\mathbf{p}}=\underline{\mathbf{a}}+\frac{\lambda}{\mu+\lambda} \underline{\mathbf{A B}}$
- $\underline{\mathbf{b}}=\underline{\mathbf{a}}+\underline{\mathbf{A B}} ; \underline{\mathbf{A B}}=\underline{\mathbf{b}}-\underline{\mathbf{a}}$
- $\underline{\mathbf{p}}=\underline{\mathbf{a}}+\frac{\lambda}{\mu+\lambda}(\underline{\mathbf{b}}-\underline{\mathbf{a}})$
- $\underline{\mathbf{p}}=\left(1-\frac{\lambda}{\mu+\lambda}\right) \underline{\mathbf{a}}+\frac{\lambda}{\mu+\lambda} \underline{\mathbf{b}}$
- $\underline{\mathbf{p}}=\frac{\mu}{\mu+\lambda} \underline{\mathbf{a}}+\frac{\lambda}{\mu+\lambda} \underline{\mathbf{b}}$

