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Hilary Term 2022, Prof Neville Harnew1

A. Electric Fields, Potentials and the Principle of Superposition

A.0 Background. State the definition of the electric field and potential and derive
their relationship. Explain how the principle of superposition applies to charge
distributions in electrostatics.

A.1 Assembly of point charges in the corners of a square. Charges +q, +2q,
−5q and +2q are placed at the four corners ABCD of a square of side a, taken in
cyclic order.

(a) Find the electric field E and the potential V at the centre of the square and
verify that they are related by E = −∇V .

(b) What is the potential energy of the charge configuration, i.e. the work done
in assembling the configuration, starting with all the charges at infinity?

[Answers: 12q/(4πε0a
2) towards C; 0; −q2(32 +

√
2)/8πε0a]

A.2 Electric dipole. Two point charges ±q are placed at points (0, 0,±d/2), defining
an electric dipole moment p = qd.

(a) Using spherical polar coordinates, show that the potential V a large distance
r = |r| from the dipole is given by

V =
p · r

4πε0r3

(b) Derive expressions for the electric field vector E = (Er, Eθ, Eφ) for large r.

(c) Determine the energy W of a dipole placed with its moment p at an angle α
to the direction of an external electric field Eext.

A.3 Assembly of point charges on a line; multipoles. A system of charges consists
of one charge +q2 at the origin and two charges −q1 at points (0, 0, ±a).

(a) Using spherical polar coordinates, find the potential V (r, θ, φ) created by these
charges, taking θ to be the angle between r and the z-axis.

(b) Expand the potential as a power series in a/r, retaining only terms up to the
second order. State which parts of your expression have monopole, dipole and
quadrupole character.

(c) For the case of q2 = 2q1, state the potential and derive expressions for the
radial and angular components of the associated electric field.
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A.4 Uniformly charged rod. A thin rod of length 2l is uniformly charged with
charge λ per unit length. By integrating the electric field components originating
from small elements of the rod, calculate the total electric field outside the rod for:

(a) any point on the line of the rod (but beyond its ends) as a function of distance
z from its mid point.

(b) any point a perpendicular distance x away from the midpoint of the rod.

A.5 Uniformly charged disk. A thin, circular disk has radius b and carries a surface
charge density σ. Consider the disk to lie in the x-y-plane with its centre at the
origin.

(a) Find the electric field E for any point P on the z-axis.

(b) What are the values of E for the limiting cases of z � b and z � b?

(Hint: you can solve this problem by calculating the field at P arising from a ring
of charge of radius r and width dr, and then integrating from r = 0 to r = b.)

A.6 Uniformly charged ring. The disk in the previous question is replaced by a
thin, uniformly charged ring of radius a carrying charge q.

(a) Determine the points on the axis of the ring for which the magnitude of the
electric field |Ez| reaches its maximum value.

(b) Show that an electron placed on the z-axis at a small distance (z � a) from
the centre of the ring will oscillate with frequency

ν =

√
eq

16π3ε0a3m
.

A.7 Uniformly charged hollow sphere. A charge is distributed uniformly with
density σ over the surface of a hollow conducting sphere of radius a. Show by
direct integration over contributions arising from infinitesimal surface elements of
the sphere that the potential at any point P inside it is given by aσ/ε0.

(Hint: orienting the z-axis to contain P and using polar coordinates will make
your life easier.)
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B. The Method of Image Charges

B.0 Background. Explain the factors that determine the parallel and normal compo-
nents of the electric field near the surface of a flat metal plate.

B.1 Charge monopole near a flat metal surface. A point charge q is placed at a
perpendicular distance d from a point O on a flat, infinite plate that is conducting
and earthed.

(a) Use the method of images to show that the magnitude E of the electric field
at the point P , a distance r from O in the plate, is given by

E(r) =
qd

2πε0(r2 + d2)3/2
.

(b) Sketch the resulting lines of the electric field and calculate the force F between
the charge and the plate.

(c) Show that the charge induced on the plate is −q.
(d) Find the work done in moving the charge to an infinite distance from the

plate. Hence find the minimum energy an electron must have in order to
escape from a metal surface (assume that it starts at a distance 0.1 nm, which
is about one atomic diameter above the surface). Express your answer in
electron volts.

B.2 Two charges near a flat metal surface. Two charges +Q and −Q are a hori-
zontal distance a apart and a vertical distance b above a large grounded conducting
sheet. Find the components of the forces acting on each charge.

B.3 Charge monopole near two orthogonal metal surfaces. Two semi-infinite
grounded plane conducting plates are joined together at a right angle. A charge Q
is situated near the join at a distance a from each plate.

(a) Show that the electric field is zero at any point along the join.

(b) Find the field just above the surface of one of the plates at the point closest
to the charge.

(c) Sketch the equipotentials near the charge and near the plate.

(d) Calculate the surface charge density on the metal plates at the points closest
to the charge Q.

(Hint: you need to consider three image charges.)

B.4 Uniformly charged rod near a metal surface. An infinite, thin, uniformly
charged rod (line charge density λ) is placed parallel to a horizontal grounded metal
plate a distance d above it. Point M lies on the plate vertically below the rod. Point
P lies on the plate a distance x from point M , where line PM is perpendicular
to the plane defined by the rod and point M . Use the result obtained in Problem
A.4(b) 2 to calculate the electic field at P as a function of x.

1With thanks to Prof Laura Herz
2 i.e. E = λ

2πε0
`

r
√
`2+r2

r̂ (radially) with ` >> r .



C. Electric Fields derived from Gauss’ Law

C.0 Background. State Gauss’ Law and explain how it may be used to determine the
electric field arising from a spherically symmetric charge density distribution ρ(r).

C.1 Uniformly charged sphere.

(a) Charge +q is distributed uniformly throughout the volume of a sphere of
radius a. Show that the electric field E and potential V at a distance r from
the centre of the sphere are given by:

E =


qr

4πε0a3
r̂

q

4πε0r2
r̂

and V =


q

4πε0a3

(
3a2

2
− r2

2

)
for 0 ≤ r ≤ a

q

4πε0r
for a ≤ r

(b) Repeat the calculation of fields and potentials for the charge now being uni-
formly distributed over the surface of a sphere of radius a.

(c) Draw graphs of the electric fields (magnitude) and the potentials for both cases
(solid sphere and shell). Take care to illustrate the relation E = −(∂V/∂r)
everywhere and account for any discontinuities that occur at r = a.

C.2 Coulomb energy of the nucleus. The nucleus of an atom can be considered
to be a charge +Ze distributed uniformly throughout the volume of a sphere of
radius a.

(a) Show that the potential energy W of a nucleus arising from the assembly of
its uniform volume charge is given by W = 3 (Ze)2(20πε0a)−1.

(b) What would the potential energy be if the charge was instead spread uniformly
over the surface of the nucleus?

C.3 Electron in a hydrogen atom. From a quantum mechanical treatment, the
potential at a distance r from the nucleus that is generated by an electron in a
hydrogen atom is given by:

V =
q

4πε0

(
exp(−2r/a)− 1

r
+

exp(−2r/a)

a

)
where a is a constant and is a measure of the “size” of the atom.

(a) Sketch V (r) for 0 ≤ r ≤ ∞ and comment on the shape of the curve.

(b) Find the magnitude of the electric field at a distance r � a from the nucleus.

(c) Show that, when an external electric field Eext is applied, the atom develops
a dipole moment of magnitude p (you may assume that the electron cloud
remains spherical and merely moves relative to the nucleus which has the
same electric charge). By considering the force on the nucleus, calculate p
and show that the polarisability p/Eext is equal to 3πε0a

3.

(d) For the hydrogen atom, a = 0.5 × 10−10 m. Show that even for the largest
accessible fields of ∼106 Vm−1 the electron charge cloud moves relative to the
nucleus by only about 10−17 m (which justifies the assumption r � a).

(e) Use Gauss law to calculate the total charge in the cloud.
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D. Capacitance and Electric-Field Energy

D.0 Background. State the definition of capacitance, and derive the electric field
energy stored inside a capacitor.

D.1 Spherical and cylindrical capacitors. Use Gauss’ law to derive expressions for
the capacitance C of:

(a) two concentric spherical conducting shells with radii R1 and R2.

(b) two very long, coaxial cylindrical conducting shells with radii R1 and R2 and
axial length L.

Show that as |R2−R1| becomes small, the systems described in (a) and (b) become
equivalent to a parallel-plate capacitor.

D.2 Charge distribution inside a parallel-plate capacitor. A capacitor consists
of two parallel large conducting planes separated by a distance d. The space
between the plates is filled with a uniform, immobile space charge of density ρ.
Find the magnitude of the electric field at a distance x from the positive plate
when a potential difference V is applied to the capacitor. Discuss whether the
capacitance of the capacitor is affected by the presence of the space charge.

[Answer: (V/d)− ρ(d− 2x)/2ε0]

D.3 Air breakdown thresholds inside a cylindrical capacitor. A capacitor con-
sists of two air-spaced concentric cylinders, similar to that described in Problem
D.1(b). The outer radius is fixed at b=10 mm, while the inner radius a is vari-
able. Electric-field induced breakdown of air will occur for field strengths exceeding
Eb=3 MVm−1. Show that in the absence of air breakdown:

(a) a = b/e is required for maximixed potential difference across the capacitor,

(b) a = b/
√
e is needed for maximized energy per unit length stored in the ca-

pacitor.

[Here e is Euler’s number.]

D.4 Forces between capacitor plates. Two parallel plates of a capacitor are spaced
10 mm apart, have an effective area of 0.01 m2 each, and a potential difference of
600 V maintained between them through a connected battery.

(a) Determine the force between the two plates by considering the energy stored
or supplied to the system. [Answer: 1.59×10−4 N]

(b) Find the work done when the plates are pulled apart slowly to a separation
of 20 mm

i. while the potential difference is maintained at 600 V, and

ii. while the plates are charged to 600 V and isolated before separation.
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(c) For case (i), show that the energy stored in the field between the plates is
halved when they are slowly pulled apart. Yet work is done in pulling them
apart against the attractive force between them. Explain.

E. Magnetostatics

E.0 Background. Describe how the laws of Biot-Savart and Ampère may be used
to calculate the magnetic field generated by an electrical current. Explain how
you would decide which of the two was the most appropriate to use for a given
situation.

E.1 Magnetic fields from straight current segments and polygons.

(a) A straight wire of length 2b carries a current I. Find the magnitude of the
magnetic field H at a distance a from the wire along its perpendicular bisector.

(b) N equal straight wires, carrying current I, form a closed regular polygon
circumscribed about a circle of radius a. Calculate the magnetic field at the
centre of the polygon and show that it takes the value at the centre of a
circular loop of radius a when N →∞. [Answer: NI sin(π/N)/2πa]

E.2 On-axis magnetic field of a coil and of a pair of Helmholtz coils

(a) A circular coil of N turns has radius a and negligible cross-section. Show that
when a current I passes through it, the magnitude of the magnetic field H at
a point on its axis a distance x from the centre of the coil is given by:

. H =
NIa2

2(a2 + x2)3/2

(b) Hence show that when the current passes in the same direction in two identical
coaxial coils separated by a distance equal to their radius, there is a small
region on the axis mid-way between the coils in which the first and second
differential coefficients of the field with respect to x are both zero 2 . What
is the practical importance of such a Helmholtz coil system?

E.3 In-plane magnetic field of a coil. A plane circular coil of N turns (of negligible
cross-section) carries current I and has radius a. Calculate the magnetic flux
density at a point lying in the plane of the coil, a distance r�a from the centre of
the coil. Show that the same result is obtained by substituting a magnetic dipole
for the coil. [Answer: µ0NIa

2/4r3]

E.4 Magnetic field inside a solenoid A solenoid of radius a and length l is uniformly
wound with n closely spaced turns of wire per unit axial length. A current I flows
through the wire. The magnetic flux density on the axis of the solenoid is measured
to be

√
2 times as large at the centre as it is at the ends of the solenoid. What is

the ratio of l to a?

E.5 Magnetic field of a long cylindrical wire. A uniform current density J exists
along the z-direction between cylinders x2 + y2 = a2 and x2 + y2 = b2.

(a) Determine the magnitude of the magnetic field in the regions (i) r<a, (ii)
a<r<b, and (iii) r>b.

(b) Sketch the dependence of the magnetic field magnitude on r.

2Any student who is interested might wish to show this is also true for the third differential coefficient.
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F. Electromagnetic Induction and Self-Inductance

F.0 Background. State the laws of Faraday and Lenz. What is meant by the terms
“self-inductance” and “mutual inductance”?

F.1 Rectangular coil moving away from current-carrying wire. A very long
straight wire carries a current I. A plane rectangular coil of high resistance, with
sides of length a and b, is coplanar with the wire. One of the sides of length a is
parallel to the wire and a distance D from it; the opposite side is further from the
wire. The coil is moving at a speed v in its own plane and away from the wire.

(a) Find the value of the e.m.f. induced in the coil by two methods:

i. by considering the e.m.f. induced in each of the sides separately;

ii. by considering the rate of change of magnetic flux through the loop.

(b) In this problem the resistance of the coil is stated as being “high”. Why is
this restriction necessary in order to find the answer given?

(c) The resistance of the coil is R. Calculate the force needed to move the coil
with speed v as described, and show that the mechanical power used to move
it is equal to the rate at which heat is generated in the coil.

[Answers: µ0Ivab/(2πD(D + b)), (µ0Ivab)
2/(4π2RD2(D + b)2)]

F.2 Sliding metal rod defining the edge of a circuit. Two horizontal metal rails,
separated by a distance L, run parallel to the x-axis. At x = 0 a resistor R is
connected between the rails. A closed circuit is formed by a metal rod which slides
along the rails with a constant velocity v such that its position at time t is given by
x = vt. There is a constant magnetic flux density B perpendicular to the plane of
the rails. Neglecting the resistance of the rails and the rod, and the self-inductance
of the circuit:

(a) calculate the current induced in the circuit;

(b) calculate the external force required to maintain steady motion of the rod;

(c) calculate the power P1 supplied to maintain the steady motion of the rod;

(d) compare P1 with the power P2 dissipated in the resistor and comment on the
result.

F.3 Homopolar generator. A conducting circular disc of radius a=3 m and mass
m=104 kg rotates about its axis with angular frequency ω=3000 min−1 in a uniform
field of magnetic flux density B=0.5 T parallel to its axis.

(a) Show that the potential difference V between the axis and the rim of the disc
is ωa2B/2.
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(b) A load resistor of R=10−3 Ω is connected suddenly between the rim and the
axis of the disc. What is the initial value of the current in the load (neglecting
any other resistance in the circuit)? How long would it take for the flywheel
to slow to half its initial speed in the absence of mechanical friction?

F.4 Self-inductance of a coax-cable. A co-axial cable is made from concentric cylin-
drical conductors. The radius of the inner conductor is a and the outer conductor
has an inner radius b and an outer radius d. Calculate the self inductance per unit
length of the cable. You may assume that (b− a) � a and that (b− a) � (d− b).
Why is this assumption necessary?

F.5 Mutual induction between a small and a large coil. A small coil of N turns
and area A, carrying a constant current I, and a circular ring with radius R have
a common axis. The small coil moves along the axis so that its distance from the
centre of the ring is given by d = d0 + a cos(ωt). Show that the voltage V induced
in the ring is given by:

V =
3

2
µ0NAIω

aR2d

(R2 + d2)5/2
sin(ωt).

F.6 Mutual inductance of two coaxial solenoids Two coaxial, completely over-
lapping solenoids, each having n turns per unit length and total length l, have radii
a and 2a.

(a) For each individual solenoid carrying a current I, find the magnetic flux den-
sity B generated within the solenoid at any point far removed from the ends.

(b) Neglecting end effects, calculate the self-inductance of each coil and the mu-
tual inductance of the coils.

(c) The outer coil has a self-inductance of 40 mH. Calculate the e.m.f. induced in
the inner coil when a current in the outer coil collapses at a constant rate of
2 As−1.

F.7 Energy of the magnetic field. Show that the energy stored in an inductor of
self-inductance L carrying a current I can be written as 1

2
LI2. Hence show that

the magnetic energy per unit volume associated with the magnetic flux density B
inside the coil can be expressed as 1

2
B2/µ0.

2



First-Year Electromagnetism: Problem Set 5

Hilary Term 2022, Prof Neville Harnew1

G. Motion of Charged Particles

G.0 Background. State an expression for the force experienced by a charged particle
in the presence of electric and magnetic fields.

G.1 Bainbridge mass spectrometer. In a Bainbridge mass spectrometer, ions of
charge q, mass m and velocity v enter an initial velocity filter, in which they
experience both a uniform E and B-field. They subsequently pass through an
aperture into a chamber in which only the B-field is present. Depending on their
mass, ions are potentially recorderd by a detector situated behind an exit slit.

(a) Make a sketch of the spectrometer, indicating the orientation of E- and B-
fields required for operation.

(b) If the spectrometer were used with E=100 V cm−1 and B=0.2 T, what would
be the velocity of an ion that can pass through the velocity filter?

(c) If the ion beam leaving the velocity filter has a width of 1 mm, could this
machine be used to separate two isotopes of helium, He3 and He4?

G.2 Charged particles moving in a constant magnetic field.

(a) Show that the path of a charged particle, moving in a constant and uniform
magnetic field, is, in general, a helix.

(b) Particles with a charge e and mass m are emitted with velocity v from a point
source. Their directions of emission make a small angle with the direction of
a uniform constant flux density B. Show that the particles are focussed to a
point at a distance 2πmv/Be from their source and at integral multiples of
this distance.

(c) An electron in interstellar space has a component of velocity 0.01c in the
direction of a magnetic flux density of 10−9 T. How many revolutions does
it make in its helical path in travelling between two points of space one
light-year apart, measured along a line of force? For an electron e/m =
1.76×1011 C kg−1. [Answer: 8.8×1010 treated non-relativistically]

G.3 Magnetic quadrupole lens. A particle of mass m and charge q is projected
along the z-direction with speed v, in a path close to the z-axis. It enters a long
magnetic quadrupole lens, within which the magnetic flux density components are
given by Bx = Ay, By = Ax and Bz = 0, where A is a constant.

(a) Write down the equations of motion for the x− and y−components of the
particle’s velocity v. Assume that the magnet is free from end effects, and
that the particle’s path always makes a small angle with the z-direction.

(b) Show that the lens has a focusing property in one plane, but is defocusing in
the other.
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(c) Show that for the focusing plane, the particle first meets the z-axis after

travelling a distance
π

2

(
mv

|qA|

)1/2

H. Electro-Magnetic Fields and Maxwell’s Equations

H.0 Background. State Maxwell’s equations in the presence of free charge and electric
current and comment on the information each one contains.

H.1 Displacement current.

(a) Calculate the magnetic field around a straight, long current-carrying wire,
using Ampere’s law. Discuss whether an identical method can be used for
calculating the magnetic field generated by a short segment of such a wire.

(b) Use a modified version of Ampere’s law that includes a suitable displacement
current, in order to determine the magnetic field H at a distance a from
a straight current-carrying wire (length 2b) along its perpendicular bisector.
Compare your result with the one you previsouly obtained from Biot-Savart’s
law (Question E.1a).

H.2 Electro-magnetic waves in vacuo.

(a) Show that Maxwell’s equations, in a vacuum devoid of charges and currents,
lead to wave equations for the electric and magnetic fields.

(b) Show that plane wave solutions may be obtained and deduce the speed of
propagation of these waves.

(c) Obtain expressions for the magnetic flux density vector B if the electric field
vector is described by E = (E0 sin[kz − ωt], 0, 0).

(d) Determine the characteristic impedance |E|/|H| of free space.

H.3 Poynting vector of an electro-magnetic wave.

(a) Calculate the Poynting vector for plane electromagnetic waves propagating in
free space.

(b) The sun has a total radiative power of 3.83×1026 W. Electromagnetic waves
emanating from the sun take 8.3 min to reach the Earth’s atmosphere. Cal-
culate the magnitude of the pointing vector on the Earth’s surface when 30%
of the incident sunlight is absorbed by the atmosphere.

H.4 Poynting vector for a long resistive rod. Consider a long resistive rod of
length l, radius r and resistance R, which carries a current I flowing uniformly
through its circular cross section. Calculate the magnitude and direction of the
Poynting vector (neglecting edge effects) and relate the rate of energy transfer
between the rod and its exterior to the total power dissipated in the rod.
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