CP2 ELECTROMAGNETISM

 https://users.physics.ox.ac.uk/~harnew/lectures/
LECTURE 9:
 CAPACITANCE

Neville Harnew ${ }^{1}$
University of Oxford
HT 2022

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \nabla \times \mathbf{B} & =\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

[^0]
OUTLINE : 9. CAPACITANCE

9.1 Capacitance
9.2 Cylindrical capacitor
9.3 Spherical capacitor
9.4 Capacitance networks
9.5 Energy stored in a capacitor
9.6 Changing C at constant V

9.1 Capacitance

- Capacitors store electrostatic energy, by keeping two opposite charge accumulations on different metallic surfaces.
- Capacitance is defined as the charge that is
 stored per unit voltage applied between the two surfaces.
Capacitance definition $\quad C=\frac{\text { Stored charge } Q}{\text { Voltage applied }}$
- The charge is equal and opposite on both surfaces.
- Simple example : Parallel plate capacitor

9.2 Cylindrical capacitor

- Example : coaxial cable. Battery supplies $+Q$ on the inner surface, $-Q$ is induced on the outer (Gauss)

9.3 Spherical capacitor

- Example : spherical capacitor with concentric hollow spheres. Battery supplies $+Q$ on the inner sphere, $-Q$ is induced on the outer (Gauss).

Capacitors summary

Capacitance: Storage of energy through separation of two oppositely poled charge accumulations

$$
\text { Capacitance } \mathrm{C}=\frac{\text { charge } \mathrm{Q}}{\text { voltage } \mathrm{V} \text { applied }}
$$

9.4 Capacitance networks

1. Capacitors in parallel

- Voltage is the same across each capacitor.

2. Capacitors in series

- Charge is the same on each capacitor plate (inner plates are isolated from the outside world, with $Q_{\text {tot }}=0$).

9.5 Energy stored in a capacitor

- Capacitor is initially uncharged : add a small amount of charge.
- Further charge will have to be brought up against the potential created by the existing charge :
Work done $\rightarrow d W=V(q) d q$

9.6 Changing C at constant V

- Battery maintains capacitor at constant V. What

Change in capacitor energy : $\quad d U_{C}=\frac{1}{2} V^{2} d C$

- Hence if C increases, U_{C} increases
- Since $Q=C V$, if C increases (ie. $d C$ is positive), battery has to supply charge to maintain the same V. Hence charge on capacitor increases, and energy stored in battery decreases.
- Battery supplies $d Q$ at constant $V \rightarrow$ energy change of battery is $d U_{B}=-V d Q$ (minus because battery loses stored energy in providing $+d Q$ to the plates of the capacitor)
- $Q=C V, d Q=V d C$, hence $\quad d U_{B}=-V^{2} d C$
- This is a general result. If U_{C} increases at constant V, this is matched by a factor 2 decrease in battery energy.
- Cons. of energy : $d U_{\text {total }}=d U_{B}+d U_{C}=d W$, where $d W=-\frac{1}{2} V^{2} d C$ is the work done to change $C^{(*)}$.
$\left.{ }^{(*}\right)$ Note $d C$ is negative if plates are pulled apart, since C decreases.

[^0]: 1
 ${ }^{1}$ With thanks to Prof Laura Herz

