CP2 ELECTROMAGNETISM

 https://users.physics.ox.ac.uk/~harnew/lectures/
LECTURE 8:
 METHOD OF IMAGES

Neville Harnew ${ }^{1}$
University of Oxford HT 2022

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \nabla \times \mathbf{B} & =\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

OUTLINE : 8. METHOD OF IMAGES

8.1 The method of images
8.2 Example : Point charge above a metal plate
8.3 Induced surface charge
8.4 Force between the charge and the plate \& energy stored
8.5 Image charges due to a pair of plates
8.6 Point charge with grounded metal sphere

8.1 The method of images

- The method of images is useful for calculating potentials created by charges placed in the vicinity of metal conductors.
- Replace conducting elements with imaginary charges ("image charges") which replicate the boundary conditions of the problem on a surface.
- The Uniqueness Theorem guarantees that within the region bounded by the surface, the potential calculated for the "imagined" charge distribution is identical to that of the "real" situation.
- If a suitable replacement image charge distribution is chosen, the calculation of the potential becomes mathematically much simpler.

8.2 Example : Point charge above a metal plate

Point charge a distance d above a grounded metal plate:

- Boundary conditions

1. At the metal surface $(z=0)$, the parallel component of $\underline{\mathbf{E}}=0$. Field lines are perpendicular to the surface.
2. Surface is an equipotential $\rightarrow V=0$
3. Far from the charge and metal plate :

$$
x^{2}+y^{2}+z^{2} \gg d^{2} \quad V \rightarrow 0
$$

- The two configurations share the same charge distribution and boundary conditions for the upper volume half.
- The Uniqueness Theorem states that the potential in those regions must therefore be identical.
- In the upper half, the fields in both scenarios are identical.

Point charge above a metal plate, continued

- Above plate : real (physical) region. Here find solution at point (x, y, z).
- Below plate : imagined "mirror charge"
- $V(x, y, z)=$
$\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{\sqrt{\left(x^{2}+y^{2}+(z-d)^{2}\right)}}-\frac{q}{\sqrt{\left(x^{2}+y^{2}+(z+d)^{2}\right)}}\right]$
- Gives :

1. $V=0$ when $z=0$
2. $V \rightarrow 0$ for $x^{2}+y^{2}+z^{2} \gg d^{2}$

\rightarrow unique solution!

- $\underline{\mathbf{E}}$ then calculated from $\underline{\mathbf{E}}=-\underline{\nabla} V$

8.3 Induced surface charge

- At the metal surface
$E_{\|}=0, E_{\perp}=-\frac{\partial V}{\partial z} \quad(z$ is the normal coordinate)
- Gauss Law at surface for element da: $\underline{\mathbf{E}} \cdot \underline{\mathbf{d a}}=E_{\perp} \cdot d \mathbf{a}=\frac{q_{\text {induced }}}{\epsilon_{0}}$
where $\sigma_{\text {induced }}=q_{\text {induced }} / d a$. No E-field in the "virtual" conductor

- So $\sigma_{\text {induced }}(x, y)=\epsilon_{0} E_{\perp}=-\epsilon_{0} \frac{\partial V}{\partial z}$
- For the case of the point charge above the metal plate
- $\frac{\partial V}{\partial z}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{-2 \times \frac{1}{2} \times q(z-d)}{\left(x^{2}+y^{2}+(z-d)^{2}\right)^{\frac{3}{2}}}-\frac{-2 \times \frac{1}{2} \times q(z+d)}{\left(x^{2}+y^{2}+(z+d)^{2}\right)^{\frac{3}{2}}}\right]$
- $\sigma_{\text {induced }}(x, y)=-\left.\epsilon_{0} \frac{\partial V}{\partial z}\right|_{z=0}=-\frac{1}{2 \pi}\left[\frac{q d}{\left(x^{2}+y^{2}+d^{2}\right)^{\frac{3}{2}}}\right]$
this is the surface charge in the $x-y$ plane
- $\sigma_{\text {induced }}$ is negative, and largest for $x=y=0$

Total charge induced on the plate surface

- Now switch to polar coordinates (radial symmetry) :
- $\sigma_{\text {induced }}=-\frac{1}{2 \pi}\left[\frac{q d}{\left(x^{2}+y^{2}+d^{2}\right)^{\frac{3}{2}}}\right]=-\frac{1}{2 \pi}\left[\frac{q d}{\left(r^{2}+d^{2}\right)^{\frac{3}{2}}}\right]$

$$
\begin{aligned}
q_{\text {induced }} & =\int_{0}^{\infty} \sigma(2 \pi r d r) \\
& =\int_{0}^{\infty}\left(-\frac{1}{2 \pi}\right)\left[\frac{q d}{\left(r^{2}+d^{2}\right)^{\frac{3}{2}}}(2 \pi r d r)\right] \\
& =\left.\frac{q d}{\sqrt{r^{2}+d^{2}}}\right|_{0} ^{\infty}=0-\frac{q d}{d}=-q
\end{aligned}
$$

- The total charge induced on the plate is just $-q$, as would be expected.
8.4 Force between the charge and the plate \& energy stored

1. Force between the point charge and the plate :

- Reduces to the case of the force between 2 point charges:

$$
\underline{\mathbf{F}}=-\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(2 d)^{2}} \underline{\hat{\mathbf{z}}}
$$

2. Energy stored in the electric field

- Bringing in charge from infinity - but noting the separation must always be maintained at $2 z$ to preserve the geometry and potential of the plane.
$\begin{aligned} W & =-\int_{\infty}^{d} \underline{\mathbf{F}} \cdot \underline{\mathbf{d} \ell}=+\frac{1}{4 \pi \epsilon_{0}} \int_{\infty}^{d} \frac{q^{2}}{(2 z)^{2}} d z \\ -W & =-\left.\frac{1}{4 \pi \epsilon_{0}}\left(\frac{a^{2}}{(4 z)}\right)\right|_{\infty} ^{d}=-\frac{1}{16 \pi \epsilon_{0}} \frac{q^{2}}{d}\end{aligned}$
Compare this to the case of bringing two point charges together from infinity to separation 2d, with the first charge fixed in space.
- Bring charge $+q$ up to d needs no work $\left(V_{+}=\frac{+q}{4 \pi \epsilon_{0} r}\right)$
- Second charge at $r=2 d: W=-q V_{+}=-\frac{q^{2}}{8 \pi \epsilon_{0} d}$
- This is a factor 2 greater than bringing charge up to a plate

8.5 Image charges due to a pair of plates

1. Image charges required to replicate the field due a charge q located between 2 grounded semi-infinite plates with a 90° angle

8.6 Point charge with grounded metal sphere

Look at a more complicated configuration ... replicating the field due to a point charge outside a grounded metal sphere, radius a. Origin $(0,0,0)$ is at sphere centre.

- Place image charge q^{\prime} at position Δx from origin
- Potential at P on sphere :

$$
V=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{r}+\frac{q^{\prime}}{r^{\prime}}\right)
$$

where $r^{2}=a^{2}+d^{2}+2 a d \cos \theta \&$
$r^{\prime 2}=a^{2}+\Delta x^{2}+2 a \Delta x \cos \theta$

- We need $V=0$ for all points on the surface of the sphere (for all θ)

$$
\frac{q}{\sqrt{a^{2}+d^{2}+2 a d \cos \theta}}=-\frac{q^{\prime}}{\sqrt{a^{2}+\Delta x^{2}+2 a \Delta x \cos \theta}}
$$

Point charge with grounded metal sphere, continued

$$
\frac{q}{\sqrt{a^{2}+d^{2}+2 a d \cos \theta}}=-\frac{q^{\prime}}{\sqrt{a^{2}+\Delta x^{2}+2 a \Delta x \cos \theta}}
$$

- This can be solved rigorously by inputting specific values for $\cos \theta(e g,-1,0,1)$. However note that :
- LHS $=\frac{q}{\sqrt{a^{2}+d^{2}+2 a d \cos \theta}} \times \underbrace{\left[\frac{a}{d} / \sqrt{\frac{a^{2}}{d^{2}}}\right]}_{=1}$

$$
=\frac{q \frac{a}{d}}{\sqrt{\frac{a^{4}}{d^{2}}+a^{2}+2 \frac{a^{3}}{d} \cos \theta}}
$$

- By inspection, image charge $q^{\prime}=-q \frac{a}{d}$, at position $\Delta x=\frac{a^{2}}{d}$
- Hence potential at any point (x, y, z) OUTSIDE the sphere

$$
\begin{aligned}
& V=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{\sqrt{(x-d)^{2}+y^{2}+z^{2}}}-\frac{q a / d}{\sqrt{\left(x-\frac{a^{2}}{d}\right)^{2}+y^{2}+z^{2}}}\right] \\
& \text { (and } V=0 \text { inside) }
\end{aligned}
$$

