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7.1 Poisson and Laplace Equations
The expression derived previously is the “integral form" of
Gauss’ Law
]
$sE-da= “ [, pdV over volume

We can express Gauss’ Law in differential form using the
Divergence Theorem :

[, (¥ -F)dV = §;F -da [F is any general vector field.]
Hence [,,(V-E)dV =L [, pdV

. . _p
This gives V-E=F

the differential form of Gauss’s Law
Using E = —VV get Poisson’s Equation for potential V

VeV =_2
A% “
In regions where p = 0 we get Laplace’s Equation:
VeV =0 (zero charge density)



7.2 Uniqueness Theorem

This states : The solution to Laplace’s equation in some volume
is uniquely determined if the potential V is specified on the
boundary surface S. Why is this so?

» Suppose there are TWO solutions
Vi and V5 to Laplace’s equation for
potential inside the volume

> 22 V1 =0 ; 22 V2 =0 V specified

and V; = V, on the boundary on this N
surface S surface

Surface S

Uniqueness :
only ONE
solution for V
(inside volume)

» Define the difference V3 = V4 — V> vh{s walnted i(p
this volume (in
Then 22 V3 = 22 V1 — 22 V2 =0 which p=0)

(V5 also obeys Laplace’s equation)
» But on the boundary V3 =V; — Vb =0



Uniqueness Theorem continued

From the previous page :
» V2V, =0 & V2%V, = 0 with V4 = V» on the surface
» V3 =V;— Vo (which =0 on the surface )

» V2V3 = 0 everywhere.

Surface S

PN Uniqueness :
( >( only ONE

\ \
Vspecified | \solution for V

on this ) (inside volume)
surface \/,/ /

C §
AN \ Viswanted in
S~ __~ this volume (in
} which p=0)

» The V2 operator is a three-dimensional second derivative of a function -
when a function has an extrema, the second derivative will be negative

for a maximum and positive for a minimum.

» The fact that the second derivative is always zero therefore indicates
that there are no such minima or maxima in the region of interest

» Hence solutions to Laplace’s equation do not have minima or maxima.

» Since V3 = 0 on the surface, the maximum and minimum values of V3

must also be zero everywhere inside it.

Hence V3 = 0 everywhere, and V must be unique

» Note the same applies to Poisson’s equation.

> 1f V2V, = —p/ep and V2V, = —p/eg, then V2 V5 = 0 as before.



Poisson and Laplace Equations : summary

Gauss’ law: V-E = ﬂ Definition of Potential: E(r)=—-VV(r)
L & J
T

ViV = — b Poisson equation
&
In regions where p=0: V2V — ( Laplace equation

Uniqueness Theorem:

The potential V inside a volume is uniquely determined, if the following are
specified:

(i) The charge density throughout the region

(ii) The value of V on all boundaries




7.3 Laplace equation in cartesian coordinates

Example : Solutions to Laplace’s equation for a parallel plate
capacitor. Symmetry suggests use of cartesian coordinates.

et gz Tz =0
%,_/

>

0 (by symmetry)
Need to solve Z 8)(2 =0
b »W:C1—>V():C1x—|-02
E L » Values on boundary defined by capacitor plates :
X Vix=0)=VW and V(x=d)=0
0o d

> XZO, CQZVO and
x=d, Cid+C=0 — C4 :—Vo/d
» Solution : V(x) = W(1—x/d)

» Electric field E_—VV_—(9 Vx - E=

SIES
[

X



7.4 Laplace Equation in spherical coordinates

. assuming azimuthal symmetry.

General solutions to Laplace’s equation for charge distributions with azimuthal
symmetry (mainly for information here : see second year).

10 [ 40V 1 0 oV 1 92V
V=5 —(r— |+ —5——-= 0 -5 =
v 2 0r (I or ) * 2 sin 6 00 ( s )9) + r2sin? 0 002 0

Separation of variables yields the general solutions: =0
> B
V(r,0)= IZ(’) (Alr o ) Pi(cos 6)

where A, B, are constants determined by boundary conditions and P, are Legendre
Polynomials in cos 6, i.e.:

Py(cos0) =
By B P,(cos0) = cosO
V(r,0) =A¢+ — +Ajrcos8 + — cos ?] P,(cos0) = %(3(:0529_1)
Etc ...

1 By 1
—|—A2r2§(300529—1) —32

§(3cos29—1)+~-~




Laplace equation examples in spherical coordinates

1. Take a defined small spherical volume which contains
some azimuthally symmetric charge distribution :

» QOutside the volume p =0

» Boundary condition on potential : V — 0 asr — oo

» Hence A, =0forall ¢

» Retain just multipole expansion terms (monopole +
dipole+ quadrupole + - - - terms)

2. Special case of spherically symmetric charge distribution
inside the volume :

» Outside the volume p =0, V2V =0 with no 6
dependence

» Ay =B, =0 for 5#0

» V(r) = Ao+ By/r as expected from Gauss’ Law
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