CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/~harnew/lectures/

LECTURE 7: LAPLACE & POISSON EQUATIONS

Neville Harnew¹ University of Oxford HT 2022

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

1 ¹With thanks to Prof Laura Herz

OUTLINE :7. LAPLACE & POISSON EQUATIONS

7.1 Poisson and Laplace Equations

7.2 Uniqueness Theorem

7.3 Laplace equation in cartesian coordinates

7.4 Laplace Equation in spherical coordinates

7.1 Poisson and Laplace Equations

 The expression derived previously is the "integral form" of Gauss' Law

$$\oint_{S} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = \frac{1}{\epsilon_0} \int_{\mathcal{V}} \rho \, d\mathcal{V} \quad \text{over volume } \mathcal{V}$$

We can express Gauss' Law in differential form using the Divergence Theorem :

 $\int_{\nu} (\underline{\nabla} \cdot \underline{\mathbf{F}}) d\nu = \oint_{S} \underline{\mathbf{F}} \cdot \underline{\mathbf{da}} \quad [\underline{\mathbf{F}} \text{ is any general vector field.}]$ Hence $\int_{\nu} (\underline{\nabla} \cdot \underline{\mathbf{E}}) d\nu = \frac{1}{\epsilon_{0}} \int_{\nu} \rho \, d\nu$

- ► This gives $\nabla \cdot \underline{\mathbf{E}} = \frac{\rho}{\epsilon_0}$ the differential form of Gauss's Law
- Using $\underline{\mathbf{E}} = -\underline{\nabla}V$ get *Poisson's Equation* for potential *V*

$$\underline{\nabla}^2 V = -\frac{\rho}{\epsilon_0}$$

► In regions where $\rho = 0$ we get *Laplace's Equation*: $\underline{\nabla}^2 V = 0$ (zero charge density)

7.2 Uniqueness Theorem

This states : The solution to Laplace's equation in some volume is uniquely determined if the potential V is specified on the boundary surface S. Why is this so?

 Suppose there are TWO solutions V₁ and V₂ to Laplace's equation for potential inside the volume

•
$$\underline{\nabla}^2 V_1 = 0$$
; $\underline{\nabla}^2 V_2 = 0$
and $V_2 = V_2$ on the bound

and $V_1 = V_2$ on the boundary surface *S*

• Define the difference $V_3 = V_1 - V_2$ Then $\underline{\nabla}^2 V_3 = \underline{\nabla}^2 V_1 - \underline{\nabla}^2 V_2 = 0$

(V₃ also obeys Laplace's equation)

• But on the boundary $V_3 = V_1 - V_2 = 0$

Uniqueness Theorem continued

From the previous page :

- $\underline{\nabla}^2 V_1 = 0 \& \underline{\nabla}^2 V_2 = 0$ with $V_1 = V_2$ on the surface
- $V_3 = V_1 V_2$ (which = 0 on the surface)
- $\underline{\nabla}^2 V_3 = 0$ everywhere.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- The <u>∇</u>² operator is a three-dimensional second derivative of a function when a function has an extrema, the second derivative will be negative for a maximum and positive for a minimum.
- The fact that the second derivative is always zero therefore indicates that there are no such minima or maxima in the region of interest
- Hence solutions to Laplace's equation do not have minima or maxima.
- Since V₃ = 0 on the surface, the maximum and minimum values of V₃ must also be zero everywhere inside it.

Hence $V_3 = 0$ everywhere, and V must be unique

Note the same applies to Poisson's equation.

• If
$$\underline{\nabla}^2 V_1 = -\rho/\epsilon_0$$
 and $\underline{\nabla}^2 V_2 = -\rho/\epsilon_0$, then $\underline{\nabla}^2 V_3 = 0$ as before.

Poisson and Laplace Equations : summary

7.3 Laplace equation in cartesian coordinates

Example : Solutions to Laplace's equation for a parallel plate capacitor. Symmetry suggests use of cartesian coordinates.

•
$$\frac{\partial^2 V}{\partial x^2} + \underbrace{\frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}}_{= 0} = 0$$

= 0 (by symmetry)
Need to solve $\frac{\partial^2 V}{\partial x^2} = 0$
• $\frac{\partial V}{\partial x} = C_1 \rightarrow V(x) = C_1 x + C_2$
• Values on boundary defined by capacitor plates :
 $V(x = 0) = V_0$ and $V(x = d) = 0$
• $x = 0$, $C_2 = V_0$ and
 $x = d$, $C_1 d + C_2 = 0 \rightarrow C_1 = -V_0/d$
• Solution : $V(x) = V_0(1 - x/d)$
• Electric field $\mathbf{E} = -\nabla V = -\frac{\partial}{\partial t} V \hat{\mathbf{x}} \rightarrow \mathbf{E} = \frac{V_0}{2} \hat{\mathbf{x}}$

<ロ> (四) (四) (日) (日) (日)

7.4 Laplace Equation in spherical coordinates

... assuming azimuthal symmetry.

General solutions to Laplace's equation for charge distributions with azimuthal symmetry (mainly for information here : see second year).

$$\nabla^{2} \mathbf{V} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \mathbf{V}}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \mathbf{V}}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \mathbf{V}}{\partial \phi^{2}} = \mathbf{0}$$
Separation of variables yields the general solutions:

$$\mathbf{V}(r, \theta) = \sum_{l=0}^{\infty} \left(A_{l} r^{l} + \frac{B_{l}}{r^{l+1}} \right) P_{l}(\cos \theta)$$

where A_i , B_i are constants determined by boundary conditions and P_i are Legendre Polynomials in $\cos \theta$, i.e.: $P_n(\cos \theta) = 1$

$$V(r,\theta) = A_0 + \frac{B_0}{r} + A_1 r \cos \theta + \frac{B_1}{r^2} \cos \theta$$

$$+ A_2 r^2 \frac{1}{2} (3\cos^2 \theta - 1) + \frac{B_2}{r^3} \frac{1}{2} (3\cos^2 \theta - 1)$$

$$+ \cdots$$

$$P_1(\cos \theta) = \cos \theta$$

$$P_2(\cos \theta) = \frac{1}{2} (3\cos^2 \theta - 1)$$

$$Etc \dots$$

Laplace equation examples in spherical coordinates

- 1. Take a defined small spherical volume which contains some azimuthally symmetric charge distribution :
 - Outside the volume $\rho = 0$
 - Boundary condition on potential : $V \rightarrow 0$ as $r \rightarrow \infty$
 - Hence $A_{\ell} = 0$ for all ℓ
 - Retain just multipole expansion terms (monopole + dipole+ quadrupole + ··· terms)
- 2. Special case of spherically symmetric charge distribution inside the volume :
 - Outside the volume $\rho = 0$, $\nabla^2 V = 0$ with no θ dependence
 - $A_{\ell} = B_{\ell} = 0$ for $\ell \neq 0$
 - $V(r) = A_0 + B_0/r$ as expected from Gauss' Law