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7.1 Poisson and Laplace Equations
I The expression derived previously is the “integral form" of

Gauss’ Law∮
S E · da = 1

ε0

∫
ν ρdν over volume ν

I We can express Gauss’ Law in differential form using the
Divergence Theorem :∫
ν(∇ · F)dν =

∮
S F · da [F is any general vector field.]

Hence
∫
ν(∇ ·E)dν = 1

ε0

∫
ν ρdν

I This gives ∇ ·E = ρ
ε0

the differential form of Gauss’s Law
I Using E = −∇V get Poisson′s Equation for potential V

∇2V = − ρ
ε0

I In regions where ρ = 0 we get Laplace′s Equation:

∇2V = 0 (zero charge density)
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7.2 Uniqueness Theorem

This states : The solution to Laplace’s equation in some volume
is uniquely determined if the potential V is specified on the
boundary surface S. Why is this so?

I Suppose there are TWO solutions
V1 and V2 to Laplace’s equation for
potential inside the volume

I ∇2V1 = 0 ; ∇2V2 = 0

and V1 = V2 on the boundary
surface S

I Define the difference V3 = V1 − V2

Then ∇2V3 = ∇2V1 −∇2V2 = 0

(V3 also obeys Laplace’s equation)
I But on the boundary V3 = V1 − V2 = 0
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Uniqueness Theorem continued
From the previous page :
I ∇2V1 = 0 & ∇2V2 = 0 with V1 = V2 on the surface
I V3 = V1 − V2 (which = 0 on the surface )

I ∇2V3 = 0 everywhere.

I The ∇2 operator is a three-dimensional second derivative of a function -
when a function has an extrema, the second derivative will be negative
for a maximum and positive for a minimum.

I The fact that the second derivative is always zero therefore indicates
that there are no such minima or maxima in the region of interest

I Hence solutions to Laplace’s equation do not have minima or maxima.

I Since V3 = 0 on the surface, the maximum and minimum values of V3

must also be zero everywhere inside it.

Hence V3 = 0 everywhere, and V must be unique

I Note the same applies to Poisson’s equation.

I If ∇2V1 = −ρ/ε0 and ∇2V2 = −ρ/ε0, then ∇2V3 = 0 as before.
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Poisson and Laplace Equations : summary
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7.3 Laplace equation in cartesian coordinates

Example : Solutions to Laplace’s equation for a parallel plate
capacitor. Symmetry suggests use of cartesian coordinates.

I ∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2︸ ︷︷ ︸

= 0 (by symmetry)

= 0

Need to solve ∂2V
∂x2 = 0

I ∂V
∂x = C1 → V (x) = C1x + C2

I Values on boundary defined by capacitor plates :

V (x = 0) = V0 and V (x = d) = 0
I x = 0 , C2 = V0 and

x = d , C1d + C2 = 0 → C1 = −V0/d

I Solution : V (x) = V0(1−x/d)

I Electric field E = −∇V = − ∂
∂x V x̂ → E = V0

d x̂
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7.4 Laplace Equation in spherical coordinates

... assuming azimuthal symmetry.
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Laplace equation examples in spherical coordinates

1. Take a defined small spherical volume which contains
some azimuthally symmetric charge distribution :

I Outside the volume ρ = 0
I Boundary condition on potential : V → 0 as r →∞
I Hence A` = 0 for all `
I Retain just multipole expansion terms (monopole +

dipole+ quadrupole + · · · terms)

2. Special case of spherically symmetric charge distribution
inside the volume :

I Outside the volume ρ = 0, ∇2V = 0 with no θ
dependence

I A` = B` = 0 for ` 6= 0
I V (r) = A0 + B0/r as expected from Gauss’ Law
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