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OUTLINE :7. LAPLACE & POISSON EQUATIONS

7.1 Poisson and Laplace Equations

7.2 Uniqueness Theorem
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7.4 Laplace Equation in spherical coordinates



7.1 Poisson and Laplace Equations
» The expression derived previously is the “integral form" of
Gauss’ Law
]
$sE-da= - [, pdl/ overvolume I/

» We can express Gauss’ Law in differential form using the
Divergence Theorem :



7.2 Uniqueness Theorem

This states : The solution to Laplace’s equation in some volume
is uniquely determined if the potential V is specified on the
boundary surface S. Why is this so?

» Suppose there are TWO solutions
Vi and W, to Laplace’s equation for
potential inside the volume

Surface S

Uniqueness :
only ONE
solution for V
(inside volume)

V specified
on this

surface\

Vis wanted in
this volume (in
which p=0)



Uniqueness Theorem continued

From the previous page :
» V2V, =0 & V2%V, = 0 with V4 = V» on the surface
» V3 =V;— Vo (which =0 on the surface )

» V2V3 = 0 everywhere.
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» The V2 operator is a three-dimensional second derivative of a function -
when a function has an extrema, the second derivative will be negative

for a maximum and positive for a minimum.

» The fact that the second derivative is always zero therefore indicates
that there are no such minima or maxima in the region of interest

» Hence solutions to Laplace’s equation do not have minima or maxima.

» Since V3 = 0 on the surface, the maximum and minimum values of V3

must also be zero everywhere inside it.

Hence V3 = 0 everywhere, and V must be unique

» Note the same applies to Poisson’s equation.

> 1f V2V, = —p/ep and V2V, = —p/eg, then V2 V5 = 0 as before.



Poisson and Laplace Equations : summary

Gauss’ law: V-E = ﬂ Definition of Potential: E(r)=—-VV(r)
L & J
T

ViV = — b Poisson equation
&
In regions where p=0: V2V — ( Laplace equation

Uniqueness Theorem:

The potential V inside a volume is uniquely determined, if the following are
specified:

(i) The charge density throughout the region

(ii) The value of V on all boundaries




7.3 Laplace equation in cartesian coordinates

Example : Solutions to Laplace’s equation for a parallel plate
capacitor. Symmetry suggests use of cartesian coordinates.



7.4 Laplace Equation in spherical coordinates

. assuming azimuthal symmetry.

General solutions to Laplace’s equation for charge distributions with azimuthal
symmetry (mainly for information here : see second year).
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Separation of variables yields the general solutions: =0
> B
V(r,0)= IZ(’) (Alr o ) Pi(cos 6)

where A, B, are constants determined by boundary conditions and P, are Legendre
Polynomials in cos 6, i.e.:

Py(cos0) =
By B P,(cos0) = cosO
V(r,0) =A¢+ — +Ajrcos8 + — cos ?] P,(cos0) = %(3(:0529_1)
Etc ...

1 By 1
—|—A2r2§(300529—1) —32

§(3cos29—1)+~-~




Laplace equation examples in spherical coordinates

1. Take a defined small spherical volume which contains
some azimuthally symmetric charge distribution :

» QOutside the volume p =0

» Boundary condition on potential : V — 0 asr — oo

» Hence A, =0forall ¢

» Retain just multipole expansion terms (monopole +
dipole+ quadrupole + - - - terms)

2. Special case of spherically symmetric charge distribution
inside the volume :

» Outside the volume p =0, V2V =0 with no 6
dependence

» Ay =B, =0 for 5#0

» V(r) = Ao+ By/r as expected from Gauss’ Law
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