CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/∼*harnew/lectures/*

LECTURE 6:

GAUSS LAW EXAMPLES

Neville Harnew¹ University of Oxford

HT 2022

$$
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}
$$

$$
\nabla \cdot \mathbf{B} = 0
$$

$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$

$$
\frac{1}{\mu_0} \nabla \times \mathbf{B} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
$$

1 ¹ With thanks to Prof Laura Herz

K ロ ▶ | K 御 ▶ | K 唐 ▶ | K

OUTLINE : 6. GAUSS LAW EXAMPLES

[6.1 Gauss theorem : uniform volume charge](#page-2-0)

[6.2 Gauss Theorem : Long, uniformly charged rod](#page-4-0)

[6.3 Uniformly charged infinite plate](#page-5-0)

[6.4 Electric field inside a conductor](#page-6-0)

[6.5 Revisit the electric field inside a hollow sphere](#page-8-0)

6.1 Gauss theorem : uniform volume charge

Sphere with uniform volume charge density

\n
$$
\rho = \n\begin{cases}\n\frac{q}{(4/3)\pi a^3} & \text{for } 0 \leq r \leq a \text{ (inside)} \\
0 & \text{for } a \leq r \text{ (outside)}\n\end{cases}
$$
\n

\n\n
$$
+ \oint_S \underline{E} \cdot \underline{da} = \frac{1}{\epsilon_0} \int_V \rho \, dV
$$
\n (volume *U* bounded by surface)\n

 \blacktriangleright Inside sphere : $E \cdot 4 \pi r^2 = \frac{1}{\epsilon_0} \int_0^r$ $\frac{q}{(4/3)\pi a^3}$ $4\pi r'^2 dr'$ *q* volume element E $\frac{q}{\epsilon_0}$ \int_0^t <u>3 r^{/2}</u> $rac{q}{\epsilon_0} \frac{r^3}{a^3}$ $=\frac{q}{f}$ $rac{3r'^2}{a^3}$ dr' = $rac{q}{\epsilon_0}$ $\frac{r^3}{a^3}$ (volume ratio) Linear \blacktriangleright $E = \frac{q}{4\pi\epsilon}$ $\frac{q}{4\pi\epsilon_0 a^3}$ **r** (radial) $E \alpha r$ E $\alpha \frac{1}{r^2}$ \triangleright Outside sphere : $\oint_{\mathcal{S}} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \underline{\mathbf{a}} = \frac{q}{\epsilon_0}$ a ϵ_0 $-a$ Ω r \blacktriangleright $E = \frac{q}{4\pi\epsilon}$ (point charge again) <mark>4πε₀ι</mark>

Summary Gauss Law : spherical symmetry

6.2 Gauss Theorem : Long, uniformly charged rod

- \blacktriangleright Long, uniformly charged cylindrical rod with surface charge *q*
- \triangleright Choose cylindrical Gaussian surface Symmetry : E is in the same direction as da $\oint_{\mathcal{S}} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = \boldsymbol{E} \cdot 2\pi \, \boldsymbol{r} \cdot \ell = \frac{q}{\epsilon_0}$ ϵ_0 \blacktriangleright $E = \frac{q}{\ell}$ ℓ $\frac{1}{2\,\pi\,\epsilon_0 r}=\frac{\lambda}{2\,\pi\,\epsilon}$ $\frac{1}{2 \pi \epsilon_0 r}$ (radial)

 λ is the charge per unit length

医口下 医回肠 医海绵 医单侧

6.3 Uniformly charged infinite plate

- 1. Uniformly charged "infinite" plate of area *A*
- By symmetry : $\underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \underline{\mathbf{a}} = \boldsymbol{E} \cdot d\boldsymbol{a} \ (\underline{\mathbf{E}} \parallel \underline{\mathbf{d}} \underline{\mathbf{a}})$

$$
\oint_{\mathcal{S}} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = \boldsymbol{E} \cdot 2\boldsymbol{A} = \frac{q}{\epsilon_0}
$$

(factor 2 due to both sides)

$$
E = \frac{1}{2\epsilon_0} \frac{q}{A} = \frac{\sigma}{2\epsilon_0}
$$

Field is uniform. σ is the charge per unit area

- \triangleright As the plates become very large, the contribution from the edges become negligible
- 2. The capacitor
- \triangleright Principle of superposition between the plates

$$
E = \frac{\sigma}{2\,\epsilon_0} - \frac{-\sigma}{2\,\epsilon_0} = \frac{\sigma}{\epsilon_0}
$$

► Outside the plates $E = \frac{\sigma}{2\epsilon_0} + \frac{-\sigma}{2\epsilon_0} = 0$ 6

4 D F

6.4 Electric field inside a conductor

Inside a conductor, one or more electrons per atom are free to move throughout the material (copper, gold, and other metals). We are considering electroSTATICS (static charge). As a result:

- (i) E=0 inside a conductor (free charge moves to surface until the internal electric field is cancelled).
- ρ =0 inside a conductor (from Gauss' law: E=0 hence ρ =0). (ii)
- (iii) Therefore any net charge resides on the surface.
- (iv) A conductor is an equipotential (since $E=0$, $V(r_1)=V(r_2)$).
- (v) At the surface of a conductor, E is perpendicular to the surface (otherwise charges will flow until the tangential component becomes zero when equilibrium is reached).

Properties of conductors

- 1. $E = 0$ inside a conductor
	- \triangleright We are dealing with electroSTATICS charges can move in an E-field !
	- \blacktriangleright They will move to the surface, creating surface charge which opposes applied field.
	- Equilibrium reached with $E = 0$ inside conductor.
- 2. $\rho = 0$ inside a conductor :

$$
\begin{array}{ll}\n\blacktriangleright & \oint_{S} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = \frac{1}{\epsilon_{0}} \int_{\mathcal{V}} \rho \, d\mathcal{V} \\
\blacktriangleright & \underline{\mathbf{E}} = 0 \;, \; \rho = 0\n\end{array}
$$

 \blacktriangleright Alternative treatment for the capacitor :

$$
EA + 0 = \frac{q}{\epsilon_0} \rightarrow E = \frac{q}{A\epsilon_0} = \frac{\sigma}{\epsilon_0}
$$

Where the "0" term is the field *inside* the plate

 \blacktriangleright Potential difference between plates $V = -\int_0^d \mathbf{E} \cdot \mathbf{d}\ell = -E\mathbf{d}$ 8

Gaussian surface INSIDE plate

Charge on SURFACE of plate

K ロ ⊁ | K 御 ≯ | K 重 ≯ | K 重

6.5 Revisit the electric field inside a hollow sphere

Consider an uncharged hollow metal sphere of finite thickness, with point charge $+q$ at its centre.

Inside hollow :

$$
\oint_{\mathcal{S}} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = \underline{\mathbf{E}}_r \cdot 4\pi r^2 = \frac{q}{\epsilon_0}
$$

Inside metal $E = 0$:

$$
\oint_{S} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = (q + q_1)/\epsilon_0 = 0
$$

 \rightarrow Inner surface charge $q_1 = -q$ must be induced on inner surface

 \triangleright Outside sphere :

 $\oint_{\mathcal{S}} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = \frac{q + q_1 + q_2}{\epsilon_0}$

- \triangleright Because there is no net charge on the sphere
	- \rightarrow Outer surface charge given by $q_1 + q_2 = 0$
- \rightarrow $q_2 = +q$ is induced on the outer surface 9

