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OUTLINE : 4. CONTINUOUS CHARGE DISTRIBUTIONS

4.1 Continuous Charge Distributions

4.2 Example 1 : uniformly charged annulus

4.3 Example 2 : uniformly charged rod
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4.1 Continuous Charge Distributions
I Reminder : the potential at P , position

vector r, due to assembly of charges :

V (r) =
∑

i Vi(qi) =
1

4πε0

∑
i

qi
|ri|

(where ri = r−Ri).

I And the field : E(r) = 1
4πε0

∑
i

qi
(ri)

2

ri
|ri|

I For a continuous charge distribution∑
i Vi →

∫
dV

Hence V (r) = 1
4πε0

∫ dq
|r−R|

I Integrate over all infinitesimal dq over the charge distribution,
noting that q ≡ q(R)

I Alternatively V (r) = 1
4πε0

∫
ν
ρ(R) dν
|r−R| over volume ν , where ρ(R)

is the charge density.

I Similarly for the electric field E(r) = 1
4πε0

∫
ν
ρ(R)(r−R)
|r−R|3 dν
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Continuous Charge Distributions

Adopt the notation: λ = charge density for 1D distribution,
σ = charge density for 2D, ρ = charge density for 3D
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4.2 Example 1 : uniformly charged annulus
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Uniformly charged annulus
Annulus contains charge q. Calculate the potential V on the annulus
axis at a distance z above its centre. Note the radial symmetry.

Charge density σ . Charge dq contained in
infinitesimally thin ring of radius r :

→ dq = area × charge density = 2πr dr σ

Potential at P : V = 1
4πε0

∫ b
a

dq
`(r)

V = 1
4πε0

∫ b
a

2πr dr σ√
r2+z2

= σ
2ε0

∫ b
a

r dr√
r2+z2

V = σ
2ε0

√
r2 + z2|ba

= σ
2ε0

[√
b2 + z2 −

√
a2 + z2

]
From symmetry, E field points along
z-axis: E = −ẑ ∂

∂z V (z)

E = σ
2ε0

{
z√

a2+z2
− z√

b2+z2

}
ẑ
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Special cases

a = 0 (disk)

V = σ
2ε0

[√
b2 + z2 − z

]
E = σ

2ε0

[
1− z√

b2+z2

]
ẑ

Disk (a = 0) for z >> b (far away)

V = σ
2ε0

[
z
√
(b/z)2 + 1− z

]
Use

√
1 + (b/z)2 ≈ 1 + 1

2(b/z)
2 + · · ·

V = σ
2ε0

(z + b2

2z − z) = σb2

4ε0z . But σ = q
πb2 :

Hence V = q
4πε0z (point charge)

Using same method : E = q
4πε0z2 ẑ

Disk (a = 0) for z << b (close to plate)

V = σ
2ε0

b & E = σ
2ε0

ẑ (“infinite” charged plane)
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4.3 Example 2 : uniformly charged rod
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Uniformly charged rod
I Calculate the field E at a distance a

from a uniformly charged rod, with
length between coordinates −b and c.

Charge dq contained in a small element
dx , where dq = λdx :

r =
√

a2 + x2, r̂ = 1
r

(
−x
−a

)
E = 1

4πε0

∫ c
−b

r̂
r2 dq

Integrating components:

Ex = 1
4πε0

∫ c
−b

−xλ

(a2+x2)
3
2

dx = λ
4πε0

[
1√

a2+c2
− 1√

a2+b2

]
Ey = 1

4πε0

∫ c
−b

−aλ

(a2+x2)
3
2

dx
[
use d

dx
x

a2(a2+x2)
1
2
= 1

(a2+x2)
3
2

]
Ey = λ

4πε0

[
−x/a

(a2+x2)
1
2

]c

−b
= −λ

4πε0a

[
c√

a2+c2
+ b√

a2+b2

]
Ez = 0 (symmetry)
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Special cases

b = c = `/2

Ex = 0 (cancellation by symmetry)
Ey = − λ

4πε0a
`√

a2+(`/2)2

b = c →∞
Ex = 0 (symmetry)
Ey = − λ

2πε0a (radial field)

Note that this configuration is most easily solved via
Gauss Law (see next lecture)
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