CP2 ELECTROMAGNETISM

 https://users.physics.ox.ac.uk/~harnew/lectures/
LECTURE 4:

CONTINUOUS CHARGE DISTRIBUTIONS

Neville Harnew ${ }^{1}$
University of Oxford
HT 2022

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \nabla \times \mathbf{B} & =\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

[^0]
OUTLINE : 4. CONTINUOUS CHARGE DISTRIBUTIONS

4.1 Continuous Charge Distributions
4.2 Example 1: uniformly charged annulus
4.3 Example 2 : uniformly charged rod

4.1 Continuous Charge Distributions

- Reminder : the potential at P, position vector $\underline{\mathbf{r}}$, due to assembly of charges :
$V(\underline{\mathbf{r}})=\sum_{i} V_{i}\left(q_{i}\right)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{\left|\mathbf{r}_{\mathbf{i}}\right|}$
(where $\underline{\mathbf{r}}_{\mathrm{i}}=\underline{\mathbf{r}}-\underline{\mathbf{R}}_{\mathrm{i}}$).

Hence $\quad V(\underline{\mathbf{r}})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{|\underline{\mathbf{r}}-\underline{\mathbf{R}}|}$

- Integrate over all infinitesimal $d q$ over the charge distribution, noting that $q \equiv q(\underline{\mathbf{R}})$
- Alternatively $V(\underline{\mathbf{r}})=\frac{1}{4 \pi \epsilon_{0}} \int_{\nu} \frac{\rho(\mathbf{R}) d \nu}{|\underline{\underline{\mathbf{R}}}-\underline{D}|}$ over volume ν, where $\rho(\underline{\mathbf{R}})$ is the charge density.
- Similarly for the electric field $\underline{\mathbf{E}}(\underline{\mathbf{r}})=\frac{1}{4 \pi \epsilon_{0}} \int_{\nu} \frac{\rho(\mathbf{R})(\mathbf{r}-\mathbf{R})}{|\underline{\mathbf{R}}-\underline{\mathbf{R}}|^{3}} d \nu$

Continuous Charge Distributions

Continuous charge distribution:

$$
\sum v_{i} \rightarrow \int \mathrm{dv}
$$

$$
V=\int \frac{\mathrm{d} q}{4 \pi \varepsilon_{0}|\mathbf{r}-\mathbf{R}|}
$$

Choose a convenient origin O suiting the geometry of the charge distribution!
Adopt the notation: $\lambda=$ charge density for 1D distribution, $\sigma=$ charge density for 2D, $\rho=$ charge density for 3D

4.2 Example 1 : uniformly charged annulus

Uniformly charged ring.

$$
\begin{aligned}
V & =\frac{\sigma}{2 \varepsilon_{0}}\left[\sqrt{b^{2}+z^{2}}-\sqrt{a^{2}+z^{2}}\right] \\
\mathbf{E} & =\frac{\sigma}{2 \varepsilon_{0}}\left[\frac{z}{\sqrt{a^{2}+z^{2}}}-\frac{z}{\sqrt{b^{2}+z^{2}}}\right] \hat{\mathbf{z}}
\end{aligned}
$$

Uniformly charged annulus

Annulus contains charge q. Calculate the potential V on the annulus axis at a distance z above its centre. Note the radial symmetry.

$$
\underline{\mathbf{E}}=\frac{\sigma}{2 \epsilon_{0}}\left\{\frac{z}{\sqrt{a^{2}+z^{2}}}-\frac{z}{\sqrt{b^{2}+z^{2}}}\right\} \underline{\hat{\mathbf{z}}}
$$

Special cases

4.3 Example 2 : uniformly charged rod

Uniformly charged rod.

$\mathbf{E}_{x}=\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\frac{1}{\sqrt{a^{2}+c^{2}}}-\frac{1}{\sqrt{a^{2}+b^{2}}}\right]$
$\mathbf{E}_{y}=\frac{-\lambda}{4 \pi \varepsilon_{0} a}\left[\frac{c}{\sqrt{a^{2}+c^{2}}}+\frac{b}{\sqrt{a^{2}+b^{2}}}\right]$

Uniformly charged rod

- Calculate the field \mathbf{E} at a distance a from a uniformly charged rod, with
length between coordinates $-b$ and c.

Special cases

[^0]: ${ }_{1}{ }^{1}$ With thanks to Prof Laura Herz

