CP2 ELECTROMAGNETISM

 https://users.physics.ox.ac.uk/~harnew/lectures/
LECTURE 3:
 ELECTRIC MULTIPOLES

Neville Harnew ${ }^{1}$
University of Oxford
HT 2022

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \nabla \times \mathbf{B} & =\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

${ }_{1}{ }^{1}$ With thanks to Prof Laura Herz

OUTLINE : 3. ELECTRIC MULTIPOLES

3.1 The potential due to an electric dipole
3.2 The field of an electric dipole
3.3 The torque on a dipole in an external E-field
3.4 The energy of a dipole in an external E-field
3.5 The quadrupole potential
3.6 The general multipole expansion

3.1 The potential due to an electric dipole

- Two charges $+q$ and $-q$ separated by (small) distance d
- Define dipole moment : $\underline{\mathbf{p}}=q \underline{d}$
- Potential at $P: \quad V=\frac{q}{4 \pi \epsilon_{0} r_{+}}-\frac{q}{4 \pi \epsilon_{0} r_{-}}{ }^{\frac{d}{2}}$
- Cosine rule :

$$
r_{+/-}=\sqrt{r^{2}+(d / 2)^{2} \mp d r \cos \theta}
$$

- $V=\frac{q}{4 \pi \epsilon_{0} r}\left(\frac{1}{\sqrt{1+(d / 2 r)^{2}-(d / r) \cos \theta}}-\frac{1}{\sqrt{1+(d / 2 r)^{2}+(d / r) \cos \theta}}\right)$
- Look at the field $d \ll r$:

Expand: $\frac{1}{\sqrt{1+x}}=\left(1-\frac{1}{2} x+\frac{1}{2!}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) x^{2}+\cdots\right)$, retain terms only up to first order of d / r

- $V=\frac{q}{4 \pi \epsilon_{0} r}((1+(d / 2 r) \cos \theta)-(1-(d / 2 r) \cos \theta))$

$$
V=\frac{q d \cos \theta}{4 \pi \epsilon_{0} r^{2}}=\frac{\mathbf{p} \cdot \mathbf{r}}{4 \pi \epsilon_{0} r^{3}}
$$

3.2 The field of an electric dipole

Use $\underline{\mathbf{E}}(\underline{\mathbf{r}})=-\underline{\nabla} V ; \quad V=\frac{q d \cos \theta}{4 \pi \epsilon_{0} r^{2}}$

1. Spherical polar coordinates $\underline{\nabla} \equiv\left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\right)$

$$
\begin{aligned}
& E_{r}=-\frac{\partial V}{\partial r}=\frac{2 q d \cos \theta}{4 \pi \epsilon_{0} r^{3}}=\frac{2 \mathbf{p} \cdot \mathbf{r}}{4 \pi \epsilon_{0} r^{4}} \\
& E_{\theta}=-\frac{1}{r} \frac{\partial V}{\partial \theta}=\frac{q d \sin \theta}{4 \pi \epsilon_{0} r^{3}} \\
& E_{\phi}=-\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}=0
\end{aligned}
$$

2. Cartesian coordinates $\underline{\nabla} \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$

$$
\begin{aligned}
& \underline{\mathbf{p}} \cdot \underline{\mathbf{r}}=p z ; r=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}=\frac{z}{\cos \theta} \\
& E_{x}=-\frac{\partial V}{\partial x}=-\frac{\partial}{\partial x}\left(\frac{p z}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)=\frac{p}{4 \pi \epsilon_{0}} \frac{3 z x}{r^{5}} \\
& E_{y}=-\frac{\partial V}{\partial y}=\frac{p}{4 \pi \epsilon_{0}} \frac{3 z y}{r^{5}}
\end{aligned}
$$

$$
E_{z}=-\frac{\partial V}{\partial z}=-\frac{p}{4 \pi \epsilon_{0}}\left(\frac{1}{r^{3}}-\frac{3 z^{2}}{r^{5}}\right)=\frac{p}{4 \pi \epsilon_{0} r^{3}}\left(3 \cos ^{2} \theta-1\right)
$$

3.3 The torque on a dipole in an external E-field

- Torque (couple) on the dipole :

$$
\underline{\mathbf{T}}=\sum_{i} \underline{\mathbf{r}}_{\mathrm{i}} \times \underline{\mathbf{F}}_{\mathrm{i}}
$$

- Taking moments about the centre point between the charges :

$$
\underline{\mathbf{T}}=2\left((\underline{\mathbf{d}} / 2) \times q \underline{\mathbf{E}}_{\mathrm{ext}}\right)=q \underline{\mathbf{d}} \times \underline{\mathbf{E}}_{\mathrm{ext}}
$$

- $\underline{\mathbf{T}}=\underline{\mathbf{p}} \times \underline{\mathbf{E}}_{\text {ext }}$
- Magnitude of torque from cross product :

$$
|\underline{\mathbf{T}}|=|\underline{\mathbf{p}}|\left|\underline{\mathbf{E}}_{\text {ext }}\right| \sin \theta
$$

- There is only a couple : no translational force.
3.4 The energy of a dipole in an external E-field
- Calculate the work done by an applied force to rotate the dipole from angle $\pi / 2$ to θ (take $\theta=\pi / 2$ as the zero of potential energy)
- $W=\int_{\frac{\pi}{2}}^{\theta} T d \theta^{\prime}=\int_{\frac{\pi}{2}}^{\theta} p E_{\text {ext }} \sin \theta^{\prime} d \theta^{\prime}$
- $W=\left[-p E_{e x t} \cos \theta^{\prime}\right]_{\pi / 2}^{\theta}$
$=-p E_{e x t} \cos \theta$

- Hence potential energy of \underline{p} in $\underline{\mathbf{E}}_{\text {ext }}$:

$$
U=-p E_{\text {ext }} \cos \theta=-\underline{\mathbf{p}} \cdot \underline{\mathbf{E}}_{\mathrm{ext}}
$$

3.5 The quadrupole potential

- Two charge configurations of the quadrupole, which both look identical at long distance
- Cosine rule : $r_{1 / 2}=\sqrt{r^{2}+a^{2} \mp 2 a r \cos \theta}$
- Potential at P :

$$
V=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{2 q}{r}-\frac{q}{r \sqrt{1+(a / r)^{2}-2(a / r) \cos \theta}}-\frac{q}{r \sqrt{1+(a / r)^{2}+2(a / r) \cos \theta}}\right]
$$

- Expand: $\frac{1}{r \sqrt{1+x}}=\frac{1}{r}\left(1-\frac{1}{2} x+\frac{3}{8} x^{2}+\cdots\right)$

Retain only up to powers of $(a / r)^{2}$

- $V=\frac{1}{4 \pi \epsilon_{0} r}\left[2 q-q\left\{1-\frac{1}{2}\left(\frac{a}{r}\right)^{2}+\frac{a}{r} \cos \theta+\frac{3}{8}\left(\frac{a}{r}\right)^{2} 4 \cos ^{2} \theta\right\}\right]$

$$
\begin{aligned}
& \quad-\left[q\left\{1-\frac{1}{2}\left(\frac{a}{r}\right)^{2}-\frac{a}{r} \cos \theta+\frac{3}{8}\left(\frac{a}{r}\right)^{2} 4 \cos ^{2} \theta\right\}\right] \\
= & \frac{1}{4 \pi \epsilon_{0} r}\left[+\left(\frac{a}{r}\right)^{2}-\frac{3}{4}\left(\frac{a}{r}\right)^{2} 4 \cos ^{2} \theta\right]
\end{aligned}
$$

- Quadrupole potential : $\quad V=\frac{q a^{2}}{4 \pi \epsilon_{0} r^{3}}\left(1-3 \cos ^{2} \theta\right)$

Summary: Electric dipole and quadrupole

3.6 The general multipole expansion

- Potential at $P: V(\underline{\mathbf{r}})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{\left|\underline{\mathbf{r}}_{i}\right|}$ where $\underline{\underline{r}}_{\mathrm{i}}^{\prime}=\underline{\mathbf{r}}-\underline{\mathbf{r}}_{\mathrm{i}}$
- Cosine rule: $r_{i}^{\prime}=\sqrt{r^{2}+r_{i}^{2}-2 r r_{i} \cos \theta_{i}}$
$=r \sqrt{1-2 \frac{r_{i} \cos \theta_{i}}{r}+\frac{r_{i}^{2}}{r^{2}}} \equiv r \sqrt{1+x}$
- For points P far from the charge assembly $r_{i} \ll r \rightarrow x \ll 1$
- Expand: $\frac{1}{r \sqrt{1+x}}=\frac{1}{r}\left(1-\frac{1}{2} x+\frac{3}{8} x^{2}+\cdots\right)$

Retain only up to powers of $\left(r_{i} / r\right)^{2}$

- $\frac{1}{\left|r_{i}^{\prime}\right|} \approx \frac{1}{r}\left[1+\frac{r_{i} \cos \theta_{i}}{r}-\frac{r_{i}^{2}}{2 r^{2}}+\frac{3}{2} \frac{r_{1}^{2}}{r^{2}} \cos ^{2} \theta_{i}+\cdots\right]$

$$
=\frac{1}{r}+\frac{r_{i} \cos \theta_{i}}{r^{2}}+\frac{r_{i}^{2}}{r^{3}} \frac{1}{2}\left(3 \cos ^{2} \theta_{i}-1\right)+\cdots
$$

The general multipole expansion

- $V(\underline{\mathbf{r}})=\underbrace{\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r}}_{\text {monopole term }}+\underbrace{\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i} r_{i} \cos \theta_{i}}{r^{2}}}_{\text {dipole term }}$

$$
+\underbrace{\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{\frac{1}{2} q_{i} r_{i}^{2}\left(3 \cos ^{2} \theta_{i}-1\right)}{r^{3}}}_{\text {quadrupole term }}+\cdots
$$

- So any assembly of charges can be described in terms of the sum over contributions from multipoles
- The n-th multipole potential falls off with $1 / r^{n}$

