CP2 ELECTROMAGNETISM

 https://users.physics.ox.ac.uk/~harnew/lectures/
LECTURE 20:

MAXWELL'S EQUATIONS \& ELECTROMAGNETIC WAVES

Neville Harnew ${ }^{1}$
University of Oxford
HT 2022

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \nabla \times \mathbf{B} & =\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

[^0]
OUTLINE : 20. MAXWELL'S EQUATIONS \& ELECTROMAGNETIC WAVES

20.1 Example : Ampere's Law and a charging capacitor
20.2 Example : B-field of a short current-carrying wire
20.3 Electromagnetic waves in vacuum
20.4 Electromagnetic waves : 3D plane wave solutions

Summary: Ampere's Law

Ampere's law does not comply with the Equation of Continuity:

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \quad \text { apply div: } \underbrace{\nabla \cdot(\nabla \times \mathbf{B})}_{\begin{array}{c}
=0 \\
\text { always }
\end{array}}=\mu_{0} \underbrace{\nabla \cdot \mathbf{J}}=-\frac{\partial \rho}{\partial t}
$$

This lack of charge conservation is unphysical! As a solution, add a so-called "displacement current" to \mathbf{J}, which will ensure compliance with the equation of continuity:

$$
\nabla \cdot \mathbf{J}=-\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial t}\left(\varepsilon_{0} \nabla \cdot \mathbf{E}\right)=-\nabla \cdot\left(\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
$$

$$
\begin{aligned}
& \text { Obtain Ampere's law } \\
& \text { with "displacement current": } \quad \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
\end{aligned}
$$

Using Stokes theorem: $\quad \oint_{C} \underline{\mathbf{B}} \cdot d \underline{\ell}=\int_{S}(\underline{\nabla} \times \underline{\mathbf{B}}) \cdot d \underline{\mathbf{a}}$
Gives integral form : $\oint_{C} \underline{\mathbf{B}} \cdot d \underline{\ell}=\mu_{0} \underbrace{\int_{S} \underline{\mathbf{J}} \cdot d \underline{\mathbf{a}}}_{\mu_{0} I_{\text {encl }}}+\mu_{0} \epsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot d \underline{\mathbf{a}}$

20.1 Example : Ampere's Law and a charging capacitor

- This is the first example showing why Ampere's Law fails without adding the displacement current : a straight wire, and add a capacitor into the circuit
- Before we used Ampere's Law to calculate magnetic field along Amperian loop $\oint_{C} \underline{\mathbf{B}} \cdot \underline{\mathbf{d} \ell}=\mu_{0} I_{\text {encl }}$.
- But there is not one unique path :
(i) Path 1: the smallest area (plane surface) $\rightarrow I_{\text {encl. }}=I$
(ii) Path 2: via a "bulged" surface that passes between the
capacitor plates $\rightarrow I_{\text {encl. }}=0$

- The \underline{B} field has to be the same no matter which path we choose
- The issue is that the $\underline{\mathbf{E}}$ field is changing in the capacitor!

A charging capacitor and Ampere's Law, continued

- Gauss Law for a parallel plate capacitor: $E=\frac{Q}{\epsilon_{0} A}$
- $\frac{\partial E}{\partial t}=\frac{1}{\epsilon_{0} A} \frac{\partial Q}{\partial t}=\frac{1}{\epsilon_{0} A} I$
- Add $I_{D}=\epsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot d \underline{a}$ to Ampere's Law

- $\oint_{C} \underline{\mathbf{B}} \cdot \boldsymbol{d} \underline{\ell}=\underbrace{\mu_{0} I_{\text {encl. }}}_{\text {Term } 1}+\underbrace{\mu_{0} \epsilon_{0} \int_{S} \frac{\partial \underline{\mathbf{E}}}{\partial t} \cdot \boldsymbol{d} \underline{\mathbf{a}}}_{\text {Term } 2}$
- For the surface around the wire :

Term $1=\mu_{0} I, \quad$ Term $2=0$

- For the surface around the capacitor

Term $1=0$, Term $2=\mu_{0} \epsilon_{0} \times \frac{1}{\epsilon_{0} A} I \times A=\mu_{0} I$
\rightarrow RHS $=\mu_{0} I$, regardless of choice of path $\checkmark \checkmark$
In differential form : $\quad \underline{\nabla} \times \underline{\mathbf{B}}=\mu_{0}\left(\underline{\mathbf{J}}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)$

20.2 Example : B-field of a short current-carrying wire

- Recall B-field from Biot-Savart Law $\rightarrow B=\frac{\mu_{0} I}{2 \pi a} \frac{b}{\sqrt{b^{2}+a^{2}}}$
- Again, Ampere's law fails depending on what path we use. Need to use displacement current.
- $\oint_{C} \underline{\mathbf{B}} \cdot d \underline{\ell}=\mu_{0} I_{\text {encl. }}+\mu_{0} \epsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot d \underline{\mathbf{a}}$
- Wire is short, so charge builds up at the ends giving time-varying E-field

B-field of a short current-carrying wire, continued

- Integrate $\frac{\partial E}{\partial t}$ over area, radius a
- Calculate \underline{E}-field due to two point charges at wire ends, $\pm b$

$$
E(r)=-\underbrace{\frac{2 Q /\left(4 \pi \epsilon_{0}\right)}{\left(r^{2}+b^{2}\right)}}_{r^{\prime 2}} \underbrace{\frac{b}{\sqrt{r^{2}+b^{2}}}}_{\cos \theta}
$$

(2 field components E_{+}and E_{-}, and note I_{D} and I have opposite signs)

- $I_{D}=\epsilon_{0} \int_{0}^{a} \frac{\partial E(r)}{\partial t} 2 \pi r d r=\epsilon_{0} \frac{\partial Q}{\partial t} \int_{0}^{a}-\frac{b /\left(2 \pi \epsilon_{0}\right)}{\left(r^{2}+b^{2}\right)^{\frac{3}{2}}} 2 \pi r d r$
- $I_{D}=\frac{\partial Q}{\partial t}\left[\frac{b}{\sqrt{\left(r^{2}+b^{2}\right)}}\right]_{r=0}^{r=a}=I\left[\frac{b}{\sqrt{\left(a^{2}+b^{2}\right)}}-1\right]$
- $\oint_{C} \underline{\mathbf{B}} \cdot d \underline{\ell}=B \cdot 2 \pi \mathbf{a}=\mu_{0} I+\mu_{0} I\left[\frac{b}{\sqrt{\left(a^{2}+b^{2}\right)}}-1\right]$
- So: $B=\frac{\mu_{0} I}{2 \pi a} \frac{b}{\sqrt{b^{2}+a^{2}}}$ as from Biot-Savart Law $\checkmark \checkmark$

Summary of Maxwell's Equations

$\oint_{S} \mathbf{E} \cdot \mathbf{d a}=\frac{Q}{\varepsilon_{0}} \leftrightarrow \nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$
Gauss' law: Charge generates an electric field. Electric field lines begin and end on charge.

$\oint_{S} \boldsymbol{B} \cdot \boldsymbol{d a}=0 \leftrightarrow \nabla \cdot \mathbf{B}=0$

There are no magnetic monopoles.
Magnetic field lines form closed loops.

$$
\begin{gathered}
\oint \mathbf{E} \cdot \mathbf{d} \boldsymbol{l}=-\frac{\mathrm{d}}{\mathrm{dt}} \int_{S} \mathbf{B} \cdot \mathbf{d a} \\
\leftrightarrow \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
\end{gathered}
$$

Faraday's law: time-varying magnetic fields create electric fields (induction).

$$
\begin{array}{r}
\oint \mathbf{B} \cdot \mathbf{d} \boldsymbol{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \frac{\mathrm{~d}}{\mathrm{dt}} \int_{S} \mathbf{E} \cdot \mathbf{d a} \\
\leftrightarrow \quad \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

Ampere's law including displacement current: electric currents and time-varying electric fields generate magnetic fields.

20.3 Electromagnetic waves in vacuum

- In the absence of electric charge or current

$$
\rightarrow \quad \rho=0 \text { and } \underline{\mathbf{J}}=0:
$$

- Maxwell's Equations become :

$$
\begin{array}{ll}
\underline{\nabla} \cdot \underline{\mathbf{E}}=0 & \underline{\nabla} \cdot \underline{\mathbf{B}}=0 \\
\underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial \mathbf{B}}{\partial t} & \underline{\nabla} \times \underline{\mathbf{B}}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

(note the symmetry between the $\underline{\mathrm{E}}$ and $\underline{\mathrm{B}}$ fields)

- Apply curl to Faraday's law :

$$
\underline{\nabla} \times \underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial}{\partial t} \underline{\nabla} \times \underline{\mathbf{B}}=-\mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \underline{\mathbf{E}}
$$

- Use the vector identity : $\underline{\nabla} \times \underline{\nabla} \times \underline{\mathbf{E}}=\underline{\nabla} \underbrace{(\underline{\nabla} \cdot \underline{\mathbf{E}})}_{=0}-\underline{\nabla}^{2} \underline{\mathbf{E}}$
- This gives us a wave equation in $\underline{\mathbf{E}}$:

$$
\underline{\nabla}^{2} \underline{\mathbf{E}}-\epsilon_{0} \mu_{0} \underline{\ddot{\mathbf{E}}}=0
$$

Electromagnetic waves in vacuum, continued

$$
\begin{array}{ll}
\underline{\nabla} \cdot \underline{\mathbf{E}}=0 & \underline{\nabla} \cdot \underline{\mathbf{B}}=0 \\
\underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial \mathbf{B}}{\partial t} & \underline{\nabla} \times \underline{\mathbf{B}}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

- Apply curl to Ampere's law :

$$
\underline{\nabla} \times \underline{\nabla} \times \underline{\mathbf{B}}=\epsilon_{0} \mu_{0} \frac{\partial}{\partial t} \underline{\nabla} \times \underline{\mathbf{E}}=-\mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \underline{\mathbf{B}}
$$

- Use the vector identity : $\underline{\nabla} \times \underline{\nabla} \times \underline{\mathbf{B}}=\underline{\nabla}(\underbrace{(\nabla \cdot \underline{\mathbf{B}})}_{=0}-\underline{\nabla}^{2} \underline{\mathbf{B}}$
- This gives us a wave equation in $\underline{\mathrm{B}}$:

$$
\underline{\nabla}^{2} \underline{\mathbf{B}}-\epsilon_{0} \mu_{0} \underline{\ddot{\mathbf{B}}}=0
$$

together with :

$$
\underline{\nabla}^{2} \underline{\mathbf{E}}-\epsilon_{0} \mu_{0} \underline{\ddot{\mathbf{E}}}=0
$$

- These equations have general solutions (in 1D) of the form:
- $E(x, t)=F(x-c t)+G(x+c t)$ and $B(x, t)=F^{\prime}(x-c t)+G^{\prime}(x+c t)$ where $F, G, F^{\prime}, G^{\prime}$ are any functions of $(x-c t),(x+c t)$
20.4 Electromagnetic waves : 3D plane wave solutions
- Consider the simplest form of solution : 3D plane waves of the form
$\underline{\mathbf{E}}=\underline{\mathbf{E}}_{0} \exp (i(\omega t-\underline{\mathbf{k}} \cdot \underline{\mathbf{r}})) \quad$ and
Plane waves
$\underline{\mathbf{B}}=\underline{\mathbf{B}}_{0} \exp (i(\omega t-\underline{\mathbf{k}} \cdot \underline{\mathbf{r}}))$
Real part : $\operatorname{Re}[\underline{\mathbf{E}}]=\underline{\mathbf{E}}_{0} \cos \underbrace{(\omega t-\underline{\mathbf{k}} \cdot \underline{\mathbf{r}})}_{\text {phase }}$

- $\underline{\mathbf{k}}$ is in the direction normal to the wave-fronts
- All points P form a wave-front with the same phase
- Maxima are separated by the wavelength λ where $\lambda=2 \pi / k$
- Phase velocity (or propagation velocity) of wave-fronts given by $c=\omega / k$

[^0]: ${ }^{1}{ }^{1}$ With thanks to Prof Laura Herz

