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Summary : Ampere’s Law

Using Stokes theorem:
∮

C B · d` =
∫

S (∇×B) · da

Gives integral form :
∮

C B · d` = µ0

∫
S
J · da︸ ︷︷ ︸+µ0ε0

∫
S
∂E
∂t · da

Gives integral form :
∮

C B · d` = µ0 Iencl.3



20.1 Example : Ampere’s Law and a charging capacitor

I This is the first example showing why Ampere’s Law fails
without adding the displacement current : a straight wire,
and add a capacitor into the circuit

I Before we used Ampere’s Law to calculate magnetic field
along Amperian loop

∮
C B · d` = µ0 Iencl.

But there is not one unique path :

(i) Path 1: the smallest area
(plane surface) → Iencl. = I

(ii) Path 2: via a “bulged” surface
that passes between the
capacitor plates → Iencl. = 0

The B field has to be the same no matter which path we
choose

The issue is that the E field is changing in the capacitor !
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A charging capacitor and Ampere’s Law, continued
Gauss Law for a parallel plate
capacitor : E = Q

ε0A

∂E
∂t = 1

ε0A
∂Q
∂t = 1

ε0A I

Add ID = ε0
∫

S
∂E
∂t · da to

Ampere’s Law∮
C B · d` = µ0 Iencl.︸ ︷︷ ︸

Term 1

+µ0ε0

∫
S

∂E

∂t
· da︸ ︷︷ ︸

Term 2

For the surface around the wire :
Term 1 = µ0 I , Term 2 = 0
For the surface around the capacitor
Term 1 = 0 , Term 2 = µ0ε0 × 1

ε0A I × A = µ0 I

→ RHS = µ0 I , regardless of choice of path XX

In differential form : ∇×B = µ0

(
J+ ε0

∂E
∂t

)
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20.2 Example : B-field of a short current-carrying wire

I Recall B-field from Biot-Savart Law→ B = µ0 I
2π a

b√
b2+a2

I Again, Ampere’s law fails depending on what path we use.
Need to use displacement current.

I
∮

C B · d` = µ0 Iencl. + µ0ε0
∫

S
∂E
∂t · da

I Wire is short, so charge builds up at the ends giving
time-varying E-field
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B-field of a short current-carrying wire, continued
I Integrate ∂E

∂t over area, radius a

I Calculate E-field due to two point
charges at wire ends, ±b

E(r) = − 2Q/(4πε0)
(r2 + b2)︸ ︷︷ ︸

b√
r2 + b2︸ ︷︷ ︸

r ′2 cos θ

(2 field components E+ and E−, and
note ID and I have opposite signs)

ID = ε0
∫ a

0
∂E(r)
∂t 2π r dr = ε0

∂Q
∂t

∫ a
0 −

b/(2πε0)

(r2+b2)
3
2

2π r dr

ID = ∂Q
∂t

[
b√

(r2+b2)

]r=a

r=0
= I

[
b√

(a2+b2)
− 1
]

∮
C B · d` = B · 2π a = µ0 I + µ0 I

[
b√

(a2+b2)
− 1
]

So : B = µ0 I
2π a

b√
b2+a2

as from Biot-Savart Law XX
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Summary of Maxwell’s Equations
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20.3 Electromagnetic waves in vacuum

I In the absence of electric charge or current
→ ρ = 0 and J = 0 :

I Maxwell’s Equations become :

∇ ·E = 0

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ0 ε0
∂E
∂t

.

(note the symmetry between the E and B fields)

Apply curl to Faraday’s law :

∇×∇×E = − ∂
∂t∇×B = −µ0 ε0

∂2

∂t2 E

Use the vector identity : ∇×∇×E = ∇ (∇ ·E)︸ ︷︷ ︸
= 0

−∇2 E

This gives us a wave equation in E :

∇2 E− ε0 µ0 Ë = 0
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Electromagnetic waves in vacuum, continued
∇ ·E = 0

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ0 ε0
∂E
∂t

.

Apply curl to Ampere’s law :

∇×∇×B = ε0 µ0
∂
∂t∇×E = −µ0 ε0

∂2

∂t2 B

Use the vector identity : ∇×∇×B = ∇ (∇ ·B)︸ ︷︷ ︸
= 0

−∇2 B

This gives us a wave equation in B :

together with : ∇2 B− ε0 µ0 B̈ = 0

together with : ∇2 E− ε0 µ0 Ë = 0

These equations have general solutions (in 1D) of the form:

E (x , t) = F (x − ct) + G (x + ct) and
B (x , t) = F ′ (x − ct) + G′ (x + ct)

where F ,G,F ′,G′ are any functions of (x − ct), (x + ct)
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20.4 Electromagnetic waves : 3D plane wave solutions
Consider the simplest form of solution :
3D plane waves of the form

E = E0 exp (i(ωt − k · r)) and

B = B0 exp (i(ωt − k · r))
Real part : Re[E] = E0 cos (ωt − k · r)︸ ︷︷ ︸

phase

I k is in the direction normal to the
wave-fronts

I All points P form a wave-front with the
same phase

I Maxima are separated by the
wavelength λ where λ = 2π/k

I Phase velocity (or propagation velocity)
of wave-fronts given by c = ω/k

Plane waves
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