CP2 ELECTROMAGNETISM

 https://users.physics.ox.ac.uk/~harnew/lectures/$$
\begin{gathered}
\text { LECTURE 2: } \\
\text { ELECTRIC FIELD AND } \\
\text { POTENTIAL }
\end{gathered}
$$

Neville Harnew ${ }^{1}$
University of Oxford
HT 2022

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \nabla \times \mathbf{B} & =\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

${ }^{1}$ With thanks to Prof Laura Herz

OUTLINE : 2. THE ELECTRIC FIELD AND POTENTIAL

2.1 The Electric Field
2.2 The Electrostatic Potential
2.3 The Potential Difference
2.4 Calculating the field from the potential
2.5 Energy of a system of charges
2.6 Summary: assembly of discrete charge systems

2.1 The Electric Field

- The electric field at point $\underline{\mathbf{r}}$, generated by a distribution of charges q_{i} is defined as the force per unit charge that a test charge would experience if placed at $\underline{\mathbf{r}}$.
\rightarrow a point test charge q due to a field $\underline{\mathbf{E}}$ experiences a force $\underline{\mathbf{F}}=q \cdot \underline{\mathbf{E}}=\frac{q \cdot Q}{4 \pi \epsilon_{0} r^{2}} \underline{\hat{\mathbf{r}}}$
- Electric field due to a point charge Q at the origin: always points away from + charge (radial)
$\underline{\mathbf{E}}=\underline{\mathbf{F}} / q=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \underline{\hat{\mathbf{r}}}$

- The principle of superposition holds for the electric field : the electric field generated by a distribution of charges is equal to the sum of the electric fields generated by the individual charges.

2.2 The Electrostatic Potential

- Work done to move a point test charge q from A to B

$$
W_{A B}=-\int_{\underline{\underline{r}}_{\mathrm{A}}}^{\underline{\mathbf{r}}_{\mathrm{B}}} \underline{\mathbf{F}} \cdot \underline{\mathbf{d}} \ell=-q \int_{\underline{\underline{r}}_{\mathrm{A}}}^{\mathbf{r}_{\mathrm{B}}} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \ell
$$

- The electrostatic potential difference between A and B is defined as the the work done to move a unit charge between A and B
- Since the work done is related linearly to the electric field, the principle of superposition also holds for the work done.
- Note that any field configuration can be made up of the sum of infinitesimal point charges. So we can now check that the work done by moving a test charge through the electric field of a point charge does not depend on the path taken.

The Electrostatic Potential

- Hence energy required to move test charge from A to B depends only on initial and final radial separation, and independent of path.
- Electric field is conservative

2.3 The Potential Difference

Define electrostatic potential difference

$$
V_{A B}=\frac{W_{A B}}{q}=-\int_{A}^{B} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \ell=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right)
$$

- The potential of a point charge Q at a general point \underline{r} is given by: $\quad V(\underline{\mathbf{r}})=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{r}-\frac{1}{r_{A}}\right)$
here the second term is a constant (which is often set to zero by taking $V(r \rightarrow \infty)=0$)
- Again, since \underline{E} and V are linearly related, the Principle of Superposition also holds for V.

Summary of Relationship between Electric Field and Potential

The electric field \mathbf{E} at a point \mathbf{r}, generated by a distribution of charges q_{i}, is equal to the force \mathbf{F} per unit charge q that a small test charge q would experience if it was placed at \mathbf{r} :

$$
\mathbf{E}(\mathbf{r})=\frac{\mathbf{F}(\mathbf{r})}{q}
$$

The electric potential V at a point \mathbf{r} is the energy W required per unit charge q to move a small test charge q from a reference point to r. For a system of charges:

$$
V(\mathbf{r})=\frac{W(\mathbf{r})}{q}
$$

The electric field and potential are related through:

$$
V(\mathbf{r})=-\int_{\mathbf{r}_{0}}^{\mathbf{r}} \mathbf{E}\left(\mathbf{r}^{\prime}\right) \cdot \mathbf{d} \mathbf{r}^{\prime} \quad \longleftrightarrow \mathbf{E}(\mathbf{r})=-\nabla V(\mathbf{r})
$$

2.4 Calculating the field from the potential

Revisit example 1: Calculate the electric field generated by charges $+Q$ and $+Q$, located on an equilateral triangle, and felt by "test charge" $-2 Q$ at the origin.

- But now adopt a different approach : derive the electric field from $\underline{\mathbf{E}}(\underline{\mathbf{r}})=-\underline{\nabla} V$ and evaluate $\underline{\mathbf{E}}$ at the origin.

- $\underline{\mathbf{E}}=-\frac{Q}{4 \pi \epsilon_{0}} \times$

$$
\begin{aligned}
& \left\{\frac{-1 / 2}{\left((a / 2+x)^{2}+(a \sqrt{3} / 2-y)^{2}+z^{2}\right)^{3 / 2}}\left(\begin{array}{c}
2(a / 2+x) \\
-2(a \sqrt{3} / 2-y) \\
2 z
\end{array}\right)+\right. \\
& \left.\frac{-1 / 2}{\left((a / 2-x)^{2}+(a \sqrt{3} / 2-y)^{2}+z^{2}\right)^{3 / 2}}\left(\begin{array}{c}
-2(a / 2-x) \\
-2(a \sqrt{3} / 2-y) \\
2 z
\end{array}\right)\right\}
\end{aligned}
$$

2.5 Energy of a system of charges

- Calculate the energy to bring i charges up from infinity whilst keeping all the other charges fixed in space
$U=$ the first charge q_{1} : none + the second charge $q_{2}: q_{2}\left(\frac{q_{1}}{4 \pi \epsilon_{0} r_{12}}\right)$
+ the third charge $q_{3}: q_{3}\left(\frac{q_{1}}{4 \pi \epsilon_{0} r_{13}}+\frac{q_{2}}{4 \pi \epsilon_{0} r_{23}}\right)$

+ the fourth charge $q_{4}: q_{4}\left(\frac{q_{1}}{4 \pi \epsilon_{0} r_{14}}+\frac{q_{2}}{4 \pi \epsilon_{0} r_{24}}+\frac{q_{3}}{4 \pi \epsilon_{0} r_{34}}\right)$
- + etc, up to the $i^{\text {th }}$ charge
- Compare to W, the sum over potential energies experienced by each charge from all other charges:
$W=\sum_{i} q_{i} \sum_{j(\neq i)} \frac{q_{j}}{4 \pi \epsilon_{0} r_{i j}}$

In matrix form :

- $U=$
$\left(q_{1} q_{2} q_{3} \cdots q_{i-1} q_{i}\right)\left(\begin{array}{ccccc}0 & 0 & \cdots & 0 & 0 \\ 1 / r_{12} & 0 & \cdots & 0 & 0 \\ 1 / r_{13} & 1 / r_{23} & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 / r_{1, i-1} & 1 / r_{2, i-1} & \cdots & 0 & 0 \\ 1 / r_{1 i} & 1 / r_{2 i} & \cdots & 1 / r_{i-1, i} & 0\end{array}\right)\left(\begin{array}{c}q_{1} \\ q_{2} \\ q_{3} \\ \cdots \\ q_{i-1} \\ q_{i}\end{array}\right)$
and where

$$
W=
$$

$$
\left(q_{1} q_{2} q_{3} \cdots q_{i-1} q_{i}\right)\left(\begin{array}{ccccc}
0 & 1 / r_{21} & \cdots & 1 / r_{i-1,1} & 1 / r_{i 1} \\
1 / r_{12} & 0 & \cdots & 1 / r_{i-1,2} & 1 / r_{i 2} \\
1 / r_{13} & 1 / r_{23} & \cdots & 1 / r_{i-1,3} & 1 / r_{i 3} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 / r_{1, i-1} & 1 / r_{2, i-1} & \cdots & 0 & 1 / r_{i, i-1} \\
1 / r_{1 i} & 1 / r_{2 i} & \cdots & 1 / r_{i-1, i} & 0
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
q_{2} \\
q_{3} \\
\cdots \\
q_{i-1} \\
q_{i}
\end{array}\right)
$$

- Hence $U=\frac{1}{2} W=\sum_{i} \frac{1}{2} q_{i} V_{i}$ where $V_{i}=\sum_{j(\neq i)} \frac{q_{j}}{4 \pi \epsilon_{0} r_{i j}}$
- The energy U required to assemble a system of charges from infinity (whilst keeping all charges fixed in space) is half the energy of the sum W over potential energies experienced by each charge from all other charges.

Energy to assemble the system in Example 1

2.6 Summary: assembly of discrete charge systems

The Electric field \mathbf{E} and Potential V of a distribution of point charges q_{i} placed at positions r_{i} are:

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\left(\mathbf{r}-\mathbf{r}_{i}\right)^{2}} \frac{\mathbf{r}-\mathbf{r}_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|} \\
& V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|}
\end{aligned}
$$

The energy U required to assemble a system of point charges q_{i} by bringing them to positions $\mathbf{r}_{\mathbf{i}}$ from infinity is given by:

$$
U=\frac{1}{8 \pi \varepsilon_{0}} \sum_{i} q_{i} \sum_{i \neq j} \frac{q_{j}}{r_{j i}}=\frac{1}{2} \sum_{i} q_{i} V_{i}
$$

where V_{i} is the potential experienced by q_{i} at $\mathbf{r}_{\mathbf{i}}$ from all other charges q_{j}.

