## CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/~harnew/lectures/

### LECTURE 18:

# TRANSFORMER, MAGNETIC ENERGY



Neville Harnew<sup>1</sup>
University of Oxford
HT 2022

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

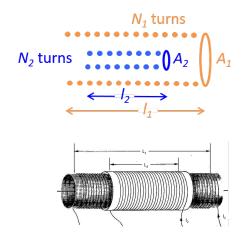
$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$



<sup>&</sup>lt;sup>1</sup>With thanks to Prof Laura Herz

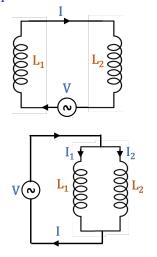
#### OUTLINE: 18. TRANSFORMER, MAGNETIC ENERGY

18.1 Coaxial solenoids sharing the same area

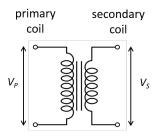

18.2 Inductors in series and parallel

18.3 The transformer

18.4 Energy of the magnetic field

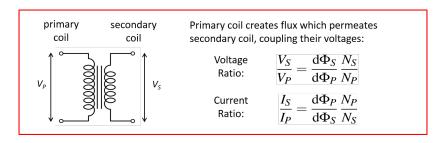

#### 18.1 Coaxial solenoids sharing the same area

From before: mutual inductance between coils:




In general circuits may not be tightly coupled, hence  $M = k\sqrt{(L_1 L_2)}$  where k < 1. k is the *coefficient of coupling*.

#### 18.2 Inductors in series and parallel




#### 18.3 The transformer



- ► Transformer will step up or step down applied voltage V<sub>P</sub> by the winding ratio
- Ideally there is no power dissipated in the transformer if coils have zero resistance

#### *Transformer summary*



#### 18.4 Energy of the magnetic field

Consider the energy stored in an inductor L:

Change in current results in a back EMF  $\mathcal{E}$ 

#### Summary of energy in E and B fields

Electric field energy

Magnetic field energy