CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/~harnew/lectures/

LECTURE 16:

INDUCTION EXAMPLES & SELF INDUCTION

Neville Harnew¹ University of Oxford HT 2022

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

¹With thanks to Prof Laura Herz

OUTLINE : 16. INDUCTION EXAMPLES & SELF INDUCTION

16.1 Example : the Homopolar Generator (Faraday's disk)

16.2 Example : coil rotating in a B-field

16.3 Self inductance

16.4 Example : self induction of a long coil

16.5 Example : long coil in varying B with resistive load

16.6 Example : self induction of a coaxial cable

Faraday's and Lenz's Laws summary

Lenz's Law:

An induced electromotance always gives rise to a current whose magnetic field opposes the original change in magnetic flux.

《口》 《聞》 《臣》 《臣》

Unit of magnetic flux Weber $[Wb] = [Tm^2] = [kg m^2 s^{-2} A^{-1}]$

16.1 Example : the Homopolar Generator (Faraday's disk)

- 1. Determine voltage using Lorenz force
 - Metal disk mechanically rotated (performing work)
 - ► A *B*-field is present with <u>B</u> perpendicular to the disk area.
 - Voltage pick-up between the centre and rim of disk.
 - EMF is *radial*, with identical potential along each circumference element, radius r

$$\mathcal{E} = \int_{r=0}^{r=a} (\mathbf{\underline{v}} \times \mathbf{\underline{B}}) \cdot \mathbf{\underline{dr}}$$

where $\underline{\mathbf{v}} \perp \underline{\mathbf{B}} \perp \underline{\mathbf{dr}}$ and $\mathbf{v} = \mathbf{r} \, \omega$

$$\mathbf{\mathcal{E}} = \int_0^a \omega \mathbf{B} \, \mathbf{r} \, \mathbf{d} \mathbf{r} = \frac{1}{2} \omega \mathbf{a}^2 \mathbf{B}$$

The Homopolar Generator continued

2. Determine using Faraday's Law

 $\mathcal{E} = -\frac{d}{dt} \int_{\mathcal{S}} \mathbf{\underline{B}} \cdot \mathbf{\underline{da}}$

• Consider area element $\Delta A = r \Delta \theta \Delta r$

$$\frac{dA}{dt} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(r \,\Delta \theta \,\Delta r \right) = \omega r \,\Delta r$$

• Add up all contributions $\Delta r \rightarrow dr$

(There is a +/- sign ambiguity depending on direction of <u>da</u>. Take direction such that \mathcal{E} is positive.)

$$\mathbf{E} = \int_0^a \omega \mathbf{B} \, \mathbf{r} \, \mathbf{d} \mathbf{r} = \frac{1}{2} \omega \mathbf{a}^2 \mathbf{B}$$

same result as before *.

* Strictly speaking, this method from Faraday's Law is not entirely sensible since the current is continuous across the disk and $\int_{S} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}}$ is in principle only applicable for a surface bounding a closed current path (see for example Griffiths).

16.2 Example : coil rotating in a B-field

Coil, *N* turns, rotating at angular frequency ω in a uniform *B*-field

Magnetic flux

 $\Phi = \int \underline{\mathbf{B}} \cdot \underline{\mathbf{da}} = N A B \sin \theta$

where $\theta = \omega t$

 $[\times N \text{ since each turn of the coil links flux}]$

 $\mathcal{E} = -\frac{d\Phi}{dt} = -NAB\omega \cos\omega t$

 This is a generator/dynamo (incorporated into most aspects of electrical power generation).

16.3 Self inductance

- Take a closed-loop circuit through which current flows
- The current *I* has an associated magnetic field which penetrates the circuit, $B \propto I$
- If the current changes, there will be a changing *B*-field through the loop.

- ► Faraday : The changing magnetic flux Φ induces an EMF (voltage) in the loop *itself* : $\mathcal{E} = -\frac{d\Phi}{dt}$, where $\Phi = \int \underline{\mathbf{B}} \cdot \underline{\mathbf{da}}$
- Lenz : This EMF will act in a direction so as to oppose the change in flux which caused it
- EMF induced $\mathcal{E} = -\frac{d\Phi}{dt}$; Note that $\Phi \propto B \propto I$
- Define self inductance $L = \frac{\Phi}{T}$

 $L = \frac{\Phi}{I}$

Since $\Phi \propto I$, can also be written $L = \frac{d\Phi}{dI} = \frac{d\Phi}{dt} / \frac{dI}{dt} = -\mathcal{E} / \frac{dI}{dt}$

• *L* depends solely on the geometry of the circuit. (Compare with circuit theory : $V = L \frac{dI}{dt}$)

16.4 Example : self induction of a long coil

Calculate the self inductance of a long coil, area A, length ℓ , with N turns

- From Ampere's law $B = \mu_0 \frac{N}{\ell} I$
- Magnetic flux $\Phi = \int \underline{\mathbf{B}} \cdot \underline{\mathbf{da}}$

$$\Phi = N A B = \mu_0 \frac{N^2}{\ell} A I$$

(since each of the *N* coils links its own flux)

Hence

$$L=rac{\Phi}{I}=\mu_0rac{N^2}{\ell}\, A$$

EMF induced in coil :

$$\mathcal{E} = -\frac{d\Phi}{dt} = -\mu_0 \, \frac{N^2}{\ell} \, \mathbf{A} \, \frac{dI}{dt} = -L \frac{dI}{dt}$$

16.5 Example : long coil in varying B with resistive load

- Consider a long coil, area A, length *l*, with N turns.
- Coil is immersed in axial time-varying magnetic field : B(t) = B₀ cos ωt
- ► EMF is induced in coil, coil is connected across a resistor → current will flow
- EMF induced :

$$\mathcal{E} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \left(N A B_0 \cos \omega t \right)$$
$$= N A \omega B_0 \sin \omega t$$

Long coil in varying B with resistive load, continued

- Self inductance of coil : $L = \mu_0 \frac{N^2}{\ell} A$
- Back EMF induced due to L opposes the changing current (Lenz)
- Ohm's Law for current flowing in the coil

back emf

Alternatively can write $\mathcal{E} = I Z$ where $Z = R + j\omega L \rightarrow Z = |Z| e^{j\phi}$

- $\mathcal{E} = Im \left[\mathcal{E}_0 e^{j\omega t} \right]$ where $\mathcal{E}_0 = (N A \omega B_0)$
- Current $I = I_0 Im \left[e^{j(\omega t \phi)} \right]$ where $I_0 = \mathcal{E}_0 / |Z| = \mathcal{E}_0 / \sqrt{R^2 + (\omega L)^2}$ and phase angle : $\tan \phi = (\omega L)/R$

16.6 Example : self induction of a coaxial cable

Calculate the self inductance of a coaxial cable, inner/outer radii a & b, length ℓ

- From Ampere's law, for $a \ge r \ge b$: $B = \frac{\mu_0 I}{2\pi r}$
- Note that the area linking flux is radial : da = ℓ dr
- Magnetic flux :

$$\Phi = \int_{a}^{b} \frac{\mu_{0}I}{2\pi r} \ell \, dr$$
$$= \frac{\mu_{0}I}{2\pi} \log_{e} \left(\frac{b}{a}\right) \, \ell$$

$$L = \frac{\Phi}{I} = \frac{\mu_0}{2\pi} \log_e\left(\frac{b}{a}\right) \ell$$

<口> <部> <部> < 2> < 3</td>