CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/~harnew/lectures/

LECTURE 16:

INDUCTION EXAMPLES & SELF INDUCTION

Neville Harnew¹
University of Oxford
HT 2022

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

¹With thanks to Prof Laura Herz

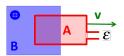
OUTLINE : 16. INDUCTION EXAMPLES & SELF INDUCTION

- 16.1 Example: the Homopolar Generator (Faraday's disk)
- 16.2 Example: coil rotating in a B-field
- 16.3 Self inductance
- 16.4 Example: self induction of a long coil
- 16.5 Example: long coil in varying B with resistive load
- 16.6 Example: self induction of a coaxial cable

Faraday's and Lenz's Laws summary

Faraday's Law of electromagnetic induction:

The induced electromotance $|\mathcal{E}|$ in any closed circuit is equal to the negative of the time rate of change of the magnetic flux Φ through the circuit.



$$\varepsilon = \frac{d\Phi}{dt} = -\frac{d}{dt} \oint_{S} \mathbf{B} \cdot d\mathbf{a}$$

In terms of E- and B-fields:

Integral
$$\oint \mathbf{E} \cdot \mathbf{d} \, \mathbf{l} = -\frac{d}{dt} \oint_{S} \mathbf{B} \cdot \mathbf{da}$$

Differential form:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

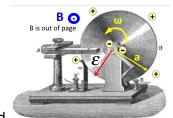
Lenz's Law:

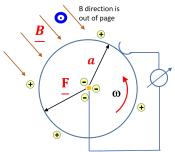
An induced electromotance always gives rise to a current whose magnetic field opposes the original change in magnetic flux.

Unit of magnetic flux Weber $[Wb] = [Tm^2] = [kg m^2 s^{-2} A^{-1}]$

16.1 Example: the Homopolar Generator (Faraday's disk)

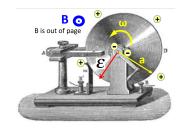
- 1. Determine voltage using Lorenz force
 - Metal disk mechanically rotated (performing work)
 - A B-field is present with B perpendicular to the disk area.
 - Voltage pick-up between the centre and rim of disk.
 - EMF is radial, with identical potential along each circumference element, radius r



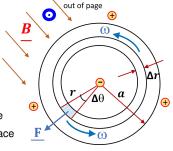


The Homopolar Generator continued

2. Determine using Faraday's Law

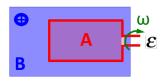


* Strictly speaking, this method from Faraday's Law is not entirely sensible since the current is continuous across the disk and $\int_S \underline{\mathbf{B}} \cdot \underline{\mathbf{da}}$ is in principle only applicable for a surface bounding a closed current path (see for example Griffiths).

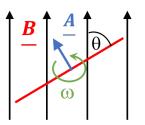


B direction is

16.2 Example: coil rotating in a B-field

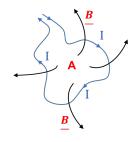


► This is a generator/dynamo (incorporated into most aspects of electrical power generation).



16.3 Self inductance

- Take a closed-loop circuit through which current flows
- ► The current I has an associated magnetic field which penetrates the circuit, $B \propto I$
- ▶ If the current changes, there will be a changing *B*-field through the loop.



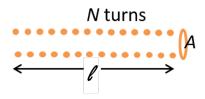
Faraday: The changing magnetic flux Φ induces an EMF (voltage) in the loop *itself*:

Lenz: This EMF will act in a direction so as to oppose the change in flux which caused it

L depends solely on the geometry of the circuit. (Compare with circuit theory : $V = L \frac{dI}{dt}$)

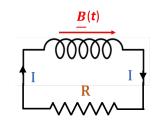
16.4 Example: self induction of a long coil

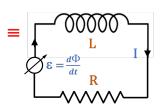
Calculate the self inductance of a long coil, area A, length ℓ , with N turns



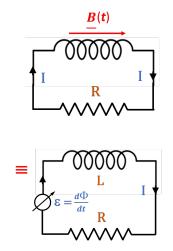
16.5 Example: long coil in varying B with resistive load

- Consider a long coil, area A, length ℓ, with N turns.
- Coil is immersed in axial time-varying magnetic field : B(t) = B₀ cos ωt
- ► EMF is induced in coil, coil is connected across a resistor → current will flow





Long coil in varying B with resistive load, continued



16.6 Example: self induction of a coaxial cable

Calculate the self inductance of a coaxial cable,

inner/outer radii a & b, length ℓ

