CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/~harnew/lectures/

LECTURE 15:

ELECTROMAGNETIC INDUCTION

Neville Harnew¹ University of Oxford HT 2022

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

1 ¹With thanks to Prof Laura Herz

OUTLINE : 15. ELECTROMAGNETIC INDUCTION

15.1 Summarizing where we are 15.1.1 Electrostatics 15.1.2 Magnetostatics

15.2 Electromagnetic induction - outline

15.3 Faraday and Lenz's Laws of Induction 15.3.1 Electromotive force (EMF) 15.3.2 Magnetic flux

15.4 Faraday's and Lenz's Laws

15.5 Faraday's Law in differential form

15.1.1 Summarizing where we are : electrostatics

1. Coulomb's Law :

$$\underline{\mathbf{E}}(\underline{\mathbf{r}}) = \frac{1}{4 \pi \epsilon_0} \int_{\mathcal{V}} \frac{\rho(\underline{\mathbf{R}})}{(\underline{\mathbf{r}} - \underline{\mathbf{R}})^3} (\underline{\mathbf{r}} - \underline{\mathbf{R}}) \, d\mathcal{V}$$

An electric charge generates an electric field. Electric field lines begin and end on charge or at ∞.

2. Gauss Law :

$$\underbrace{\oint_{S} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = \mathcal{Q}_{encl.}/\epsilon_{0}}_{\text{integral form}} \rightarrow \underbrace{\underline{\nabla} \cdot \underline{\mathbf{E}} = \rho/\epsilon_{0}}_{\text{differential form}}$$

3. The electric field is conservative :

- A well-defined potential V such that $\underline{\mathbf{E}} = -\nabla V$ $\rightarrow \oint \mathbf{E} \cdot \mathbf{d}\ell = 0$ (work done is independent of path)
- Using the vector identity : $\underline{\nabla} \times \underline{\mathbf{E}} = -\underline{\nabla} \times \underline{\nabla} V = \mathbf{0}$
- Hence

15.1.2 Summarizing where we are : magnetostatics

1. Biot-Savart Law :

$$\underline{\mathbf{B}}(\underline{\mathbf{r}}) = \frac{\mu_0}{4\pi} \int_{\mathcal{V}} \frac{\underline{\mathbf{J}}(\underline{\mathbf{R}})}{(\underline{\mathbf{r}}-\underline{\mathbf{R}})^3} \times (\underline{\mathbf{r}}-\underline{\mathbf{R}}) \, d\mathcal{V}$$

There are no magnetic monopoles.
 Magnetic field lines form closed loops.

2. Gauss Law of magnetostatics :

$$\underbrace{\oint_{\mathcal{S}} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}} = \mathbf{0}}_{\text{integral form}} \rightarrow \underbrace{\nabla \cdot \underline{\mathbf{B}} = \mathbf{0}}_{\text{differential form}}$$

- 3. Ampere's Law :
 - Magnetic fields are generated by electric currents.

$$\rightarrow \quad \oint \underline{\mathbf{B}} \cdot \underline{\mathbf{d}} \ell = \mu_0 \, I_{\textit{encl.}} \quad \rightarrow \quad \underline{\nabla} \times \underline{\mathbf{B}} = \mu_0 \, \underline{\mathbf{J}}$$

4. Continuity equation :

•
$$\int_{S} \underline{\mathbf{J}} \cdot \underline{\mathbf{da}} = -\frac{d}{dt} \int_{\mathcal{V}} \rho(\mathcal{V}) \, d\mathcal{V} \quad \rightarrow \quad \underline{\nabla} \cdot \underline{\mathbf{J}} = -\frac{d}{dt}(\rho)$$

(charge conserved)

Vector and scalar potential

Off syllabus, but worth a mention

15.2 Electromagnetic induction - outline

Up to now we have considered stationary charges and steady currents. We now focus on what happens when either the E-field or B-field varies with time.

Origins of electromagnetic induction

1831: Michael Faraday carries out a series of experiments and observes:

Two coils are arranged in a way so that the magnetic flux density of coil A penetrates through coil B. He found that if the B-field in coil A is changing, this induces an electrical current in coil B.

Moving a bar magnet through a circuit element (wire loop) generates a current in the circuit. Moving instead the circuit w.r.t. the bar magnet, gives the same result.

A change with time in the magnetic flux density through a circuit causes an "electromotive force" that moves charges along the circuit.

15.3 Faraday and Lenz's Laws of Induction

15.3.1 Electromotive force (EMF)

- Consider a wire moving with velocity <u>v</u> through a *B*-field.
- Free charges in the wire experience a Lorenz force, perpendicular to <u>v</u> & <u>B</u>:

$$\underline{\mathbf{F}} = \boldsymbol{q} \, \underline{\mathbf{v}} \times \underline{\mathbf{B}}$$

This moves charge to one side/end of the wire, which will create an electric potential drop along the wire :

 $\mathcal{E}=\int_\ell rac{dW}{q}=\int_\ell rac{{f E}\cdot {f d}\ell}{q}$ (by definition, V= work/unit charge)

• Hence $\mathcal{E} = \int_{\ell} (\underline{\mathbf{v}} \times \underline{\mathbf{B}}) \cdot \underline{\mathbf{d}} \ell$

 \mathcal{E} is the *electromotive force* (or *electromotance*) (EMF)

Note that *E* is *not* a force but a line integral over a force (i.e. a potential) !

15.3.2 Magnetic flux

- Now consider a wire circuit loop being pulled with velocity <u>v</u> out of a region containing a *B*-field.
- EMF on vertical side :
 - $\begin{aligned} \mathcal{E} &= \int_{\ell} \left(\underline{\mathbf{v}} \times \underline{\mathbf{B}} \right) \cdot \underline{\mathbf{d}} \ell \\ &= \mathbf{v} \, \mathbf{B} \, \mathbf{L} \end{aligned}$

- No contribution to EMF from horizontal sides
- Define *magnetic flux* $\Phi = \int_{S} \mathbf{\underline{B}} \cdot \mathbf{\underline{da}}$
- ► Rate of change of flux $\frac{d\Phi}{dt} = \frac{d}{dt} \int_{S} \mathbf{\underline{B}} \cdot \mathbf{\underline{da}} = \frac{d}{dt} \int_{S} \mathbf{B} \, d\mathbf{a}$ (since $\mathbf{\underline{B}}$ is || to $\mathbf{\underline{da}}$)
- $\frac{d\Phi}{dt} = \frac{d}{dt}(BA) = \frac{d}{dt}(BLx) = B\frac{dx}{dt}L = -vBL = -\mathcal{E}$ (negative since *x* decreases with positive *v*)
- In general, \mathcal{E} from magnetic flux

$$\frac{d\Phi}{dt} = \frac{d}{dt} \int_{S} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}} = -\mathcal{E}$$

15.4 Faraday's and Lenz's Laws

Faraday's Law

The induced electromotance (EMF) \mathcal{E} in any closed circuit is equal to (the negative of) the time rate of change of the magnetic flux Φ through the circuit.

$$\frac{d\Phi}{dt} = \frac{d}{dt} \int_{\mathcal{S}} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}} = -\mathcal{E}$$

Lenz's Law

The induced electromotance always gives rise to a current whose magnetic field opposes the original change in magnetic flux.

15.5 Faraday's Law in differential form

Net potential around a *closed* circuit loop = 0

$$\mathcal{E} = \oint_{\ell} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \ell$$
, hence $V = -\mathcal{E} = -\oint_{\ell} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \ell$

Faraday's Law in integral form

$$\mathcal{E} = \oint_{\ell} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}}_{\ell} = -\frac{d}{dt} \int_{\mathcal{S}} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}}$$

Apply Stokes' theorem to LHS :

$$\int_{\mathcal{S}} \left(\underline{\nabla} \times \underline{\mathbf{E}} \right) \cdot \underline{\mathbf{da}} = -\frac{d}{dt} \int_{\mathcal{S}} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}}$$

Gives Faraday's Law in differential form

$$\underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \underline{\mathbf{B}}}{\partial t}$$

Any time-varying magnetic field (or change in magnetic flux) generates an electric field which results in an electric potential *E*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

(In contrast $\underline{\nabla} \times \underline{\mathbf{E}} = \mathbf{0}$ for electro/magnito-statics)