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15.1.1 Summarizing where we are : electrostatics
1. Coulomb’s Law :

E(r) = 15 , 23— R)dV

» An electric charge generates an electric R
field. Electric field lines begin and end on
charge or at co.

2. Gauss Law :
j{E‘da:Qenc/./EO — V-E=p/e
S h/_/

differential form

integral form
3. The electric field is conservative :

» A well-defined potential V such that E= -V V
— ¢E-dl =0 (work done is independent of path)

» Using the vector identity: VxE=-VYxVV=0
» Hence VXE=0



15.1.2 Summarizing where we are : magnetostatics
1. Biot-Savart Law :

B(r) =42 [, &Ry x @t —R)dV

» There are no magnetic monopoles.
Magnetic field lines form closed loops. o

2. Gauss Law of magnetostatics :

74 B.da=0 —+ YV.-B=0

S ‘ﬁ,—/

— differential form
integral form

3. Ampere’s Law :
» Magnetic fields are generated by electric currents.
— fﬁ'ﬂzﬂolencl. — VYV xB=pud
4. Continuity equation :
> Jsd-da=—§ [,p(V)dV — V-I=-%(p)
(charge conserved)



Vector and scalar potential

Off syllabus, but worth a mention

Magnetic vector potential A defined through: B=VxA

Such A always exists because: V-B=V. (V X A) =0

Inserting into Ampere’s law: VxB=Vx(VxA)
=V(V-A)—V?A =)

There is a certain degree of freedom in which A to choose — set: V-A=0

Poisson equations for magnetostatics: 2

(one for each J & A coordinate) VA = — Mo J

- - B
Magnetic scalar potential V. B=—uVV, <«— V, = 1 / B-dl
Ho m m A

Caution: V,, is pathway-dependent and not single-valued because V x B £ 0 .
But V,, can be used with care in simply-connected, current-free regions.

Being a scalar, V,,, is mathematically easier to use than the vector potential.




15.2 Electromagnetic induction - outline

Up to now we have considered stationary charges and steady
currents. We now focus on what happens when either the
E-field or B-field varies with time.

1. Introduction: Electromagnetic Induction 7

2. Faraday’s and Lenz’s Laws of Induction

3. Self-Inductance and Mutual Inductance | Problem

Set 4

4. The Transformer

5. Energy of the Magnetic Field

6. Charged Particles in E- and B-Fields —  Problem
- Set5




Origins of electromagnetic induction

1831: Michael Faraday carries out a series of experiments and observes:

Two coils are arranged in a way so that the
magnetic flux density of coil A penetrates
through coil B. He found that if the B-field in
coil A is changing, this induces an electrical
current in coil B.

Moving a bar magnet through a circuit
element (wire loop) generates a current
in the circuit. Moving |n.stead the circuit > /@f’l
w.r.t. the bar magnet, gives the same

result.

A change with time in the magnetic flux density through a circuit causes an
“electromotive force” that moves charges along the circuit.




15.3 Faraday and Lenz’s Laws of Induction
15.3.1 Electromotive force (EMF)

» Consider a wire moving with velocity v

through a B-field. d/ ‘[ Y,
» Free charges in the wire experiencea &

Lorenz force, perpendicular to v & B: (3:) B
F=qvxB
» This moves charge to one side/end of the wire, which will
create an electric potential drop along the wire :
£= [ = [ B 4t by definition, V = work/unit charge )

» Hence &= [,(v xB)- -d¢l

€ is the electromotive force (or electromotance) (EMF)

» Note that £ is not a force but a line integral over a force
(i.e. a potential) !



15.3.2 Magnetic flux

» Now consider a wire circuit
loop being pulled with
velocity v out of a region
containing a B-field.

» EMF on vertical side :
E=[,(vxB)-dl
=vBL
» No contribution to EMF from horizontal sides
» Define magnetic flux & = [¢ B-da

> Rate of change of flux 22 =& [ B-da= g [s Bda
(since B is || to da)

» @ = %(BA) = &(BLx)=B% L =—-vBL = -¢
(negative since x decreases with positive v)

» In general, £ from magnetic flux ‘Z,—‘f = dtf B-da= —-¢



15.4 Faraday’s and Lenz’s Laws

Faraday’s Law

The induced electromotance (EMF) £ in any closed
circuit is equal to (the negative of) the time rate of
change of the magnetic flux ¢ through the circuit.

d d
FT:EfsB'd—a: —¢

Lenz’s Law

The induced electromotance always gives rise to a
current whose magnetic field opposes the original
change in magnetic flux.



15.5 Faraday’s Law in differential form

» Net potential around a closed circuit loop = 0
E=¢E-dl, henceV=-E=—-§E- -d/
» Faraday’s Law in integral form
E=§E - dl=-5 [;B-da
Apply Stokes’ theorem to LHS :
Js (VxE)-da=-§ [¢B-da
» Gives Faraday’s Law in differential form

0B
VXE=—-%
» Any time-varying magnetic field (or change in magnetic
flux) generates an electric field which results in an electric
potential £.

(Incontrast V x E =0 for electro/magnito-statics)
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