CP2 ELECTROMAGNETISM

 https://users.physics.ox.ac.uk/~harnew/lectures/LECTURE 13:

MAGNETIC DIPOLES \& THE DIVERGENCE OF B

Neville Harnew ${ }^{1}$
University of Oxford
HT 2022

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \nabla \times \mathbf{B} & =\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

${ }^{1}{ }^{1}$ With thanks to Prof Laura Herz

OUTLINE : 13. MAGNETIC DIPOLES \& THE DIVERGENCE OF B

13.1 Magnetic dipole components
13.2 Torque on a magnetic dipole in a B-field
13.3 Energy of a magnetic dipole in a B-field
13.4 Divergence of B
13.5 Divergence of B from the Biot-Savart Law

13.1 Magnetic dipole components

$$
\begin{aligned}
& \text { Magnetic dipole moment } \underline{\mathbf{m}}=I \underline{\mathbf{A}} \\
= & {[\text { Current }] \times[\text { Area bounded by the loop }] }
\end{aligned}
$$

- Electric dipole field

$$
\left.\begin{array}{c}
E_{r}=\frac{2 p \cos \theta}{4 \pi \epsilon_{0} r^{3}} \\
E_{\theta}=\frac{p \sin \theta}{4 \pi \epsilon_{0} r^{3}} \\
E_{\phi}=0 \\
p=q d
\end{array}\right\}
$$

- Magnetic dipole field

$$
\left\{\begin{array}{c}
B_{r}=\frac{2 \mu_{0} m \cos \theta}{4 \pi r^{3}} \\
B_{\theta}=\frac{\mu_{0} m \sin \theta}{4 \pi r^{3}} \\
B_{\phi}=0 \\
m=I A
\end{array}\right.
$$

The magnetic and electric dipole components have exactly the same form. (The exact derivation of the magnetic field components are beyond the scope of this course.)

13.2 Torque on a magnetic dipole in a $\underline{\mathrm{B}}$-field

Calculate the torque on a current loop placed in an external magnetic field:

- Net force on the whole loop :
$\underline{\mathbf{F}}=\oint_{\text {Ioop }} I \underline{\mathrm{~d} \ell} \times \underline{\mathbf{B}}_{\text {ext }}=0$
(since equal and opposite forces from opposite elements $\underline{d} \ell$ cancel pairwise)
- From before, there is a torque on the current loop : $|\underline{\mathbf{T}}|=2 \times \frac{a}{2} \times I B_{\text {ext }} b \sin \theta$

$$
|\underline{\mathbf{T}}|=I B_{\text {ext }} A \sin \theta \rightarrow \underline{\mathbf{T}}=I \underline{\mathbf{A}} \times \underline{\mathbf{B}}_{\text {ext }}
$$

- Torque on the magnetic dipole

$$
\underline{\mathbf{T}}=\underline{\mathbf{m}} \times \underline{\mathbf{B}}_{\text {ext }}
$$

Compare with the torque on an electric dipole $\underline{\mathbf{T}}_{\text {elec }}=\underline{\mathbf{p}} \times \underline{\mathbf{E}}_{\text {ext }}$
(*) This has been done for a rectangular shape. But note that this is a general result for $^{\text {(}}$ any shape. Any current loop can be built from infinitesimal rectangular loops with all the internal currents cancelling, yet contributing to the overall moment.

Torque on a magnetic dipole, continued

- Do the explicit calculation for a circular current loop:
- Only the vertical component of $\underline{d} \ell$ results in a torque $\rightarrow d \ell \sin \alpha$
- Torque due to facing elements $\underline{\mathrm{d} \ell}$:

$$
|d \underline{\mathbf{T}}|=2|\underline{\mathbf{x}} \times d \underline{\mathbf{F}}|=2 x(I d \ell B \sin \alpha) \sin \theta
$$

- $x=a \sin \alpha ; \ell=a \alpha \rightarrow d \ell=a d \alpha$

$$
|d \underline{\mathbf{T}}|=2\left(I a^{2} \sin ^{2} \alpha\right) B \sin \theta d \alpha
$$

- Hence

$$
\begin{aligned}
& |\underline{\mathbf{T}}|=I a^{2} B \sin \theta \int_{0}^{\pi}(1-\cos 2 \alpha) d \alpha \\
& =\pi a^{2} I B \sin \theta=I A B \sin \theta=m B \sin \theta
\end{aligned}
$$

- Result : torque on the magnetic dipole

$$
\underline{\mathbf{T}}=\underline{\mathbf{m}} \times \underline{\mathbf{B}}_{\mathrm{ext}}
$$

13.3 Energy of a magnetic dipole in a $\underline{\mathrm{B}}$-field

The energy of a magnetic dipole placed in an magnetic field $\underline{\mathrm{B}}_{\text {ext }}$ is equal to the work done in rotating dipole into its position:

- Work to rotate dipole through angle $d \theta$ $d W=T d \theta$
- Zero energy usually chosen at $\theta=\pi / 2$
- $W=\int_{\pi / 2}^{\theta} m B_{e x t} \sin \theta^{\prime} d \theta^{\prime}$

$$
=-\left[m B_{e x t} \cos \theta\right]_{\pi / 2}^{\theta}
$$

- Energy of the magnetic dipole

$$
W=-m B_{\text {ext }} \cos \theta=-\underline{\mathbf{m}} \cdot \underline{\mathbf{B}}_{\mathrm{ext}}
$$

$$
\text { [minimum at } \theta=0 \text {, maximum at } \theta=\pi \text {] }
$$

Compare with the energy of an electric dipole

$$
W_{\text {elec }}=-\underline{\mathbf{p}} \cdot \underline{\mathbf{E}}_{\text {ext }}
$$

Magnetic dipole summary

Magnetic dipole moment m of a current loop $=$ current \times area of the loop:

$$
\mathbf{m}=I \mathbf{A}
$$

$\begin{aligned} & \text { Magnetic flux density } \\ & \text { of a magnetic dipole: }\end{aligned} \quad B_{r}=\mu_{0} \frac{2 m \cos \theta}{4 \pi r^{3}} \quad B_{\theta}=\mu_{0} \frac{m \sin \theta}{4 \pi r^{3}} \quad B_{\phi}=0$

Torque on a magnetic dipole in an external magnetic field $\mathbf{B}_{\text {ext }}$:
$\mathbf{T}=I \mathbf{A} \times \mathbf{B}_{\text {ext }}=\mathbf{m} \times \mathbf{B}_{e x t}$
Energy of a magnetic dipole in an external magnetic flux density $\mathbf{B}_{\text {ext }}$:

$$
W=-m B_{e x t} \cos \theta=-\mathbf{m} \cdot \mathbf{B}_{e x t}
$$

13.4 Divergence of \underline{B}

- Place a current element $I \underline{d} \ell$ at the origin pointing along the z-axis
- The Biot-Savart Law gives the field at point $P \rightarrow \underline{\mathbf{d B}}=\mu_{0} I \frac{\mathrm{~d} \ell \times \hat{\mathbf{r}}}{4 \pi r^{2}}$
- dB is perpendicular to \underline{r} and $\hat{\underline{\underline{z}}}$
- Rotate \underline{r} around ϕ, and it can be seen the lines of \underline{B} are circles in planes perpendicular to $\underline{\mathrm{d} \ell}$ and centred on it \rightarrow the net outward flux of \underline{B} due to $\underline{\mathrm{d} \ell}$ through the surface of the volume element $d \nu$ is zero

- Any volume can be made up of volume elements as $d \nu$
- Hence $\oint_{S} \underline{B} \cdot \underline{d a}=0 \quad \rightarrow$ no magnetic monopoles.
- Divergence Theorem : $\oint_{S} \underline{\mathbf{B}} \cdot \underline{\mathbf{d a}}=\int_{\nu}(\underline{\nabla} \cdot \underline{\mathbf{B}}) d \nu \rightarrow$

$$
\underline{\nabla} \cdot \underline{B}=0
$$

13.5 Divergence of \underline{B} from the Biot-Savart Law

Calculate \underline{B}-field at point P due to a current density $\underline{\mathbf{J}}$.

- $\underline{\mathbf{B}}=\int_{\nu} \mu_{0} \frac{\underline{\mathbf{J}}\left(\mathbf{r}^{\prime}\right) \times \hat{\mathbf{R}}}{4 \pi R^{2}} d \nu^{\prime}$

$$
\underline{\mathbf{R}}=\underline{\mathbf{r}}-\underline{\mathbf{r}}^{\prime}=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)
$$

where $d \nu^{\prime}=d x^{\prime} d y^{\prime} d z^{\prime}$. (Note carefully the primed and unprimed coordinates)

- $\underbrace{\nabla \cdot \underline{\mathbf{B}}}_{\text {w.r.t. } \underline{\mathbf{r}}}=\frac{\mu_{0}}{4 \pi} \int \underline{\nabla} \cdot\left(\underline{\mathbf{J}}\left(\underline{\mathbf{r}}^{\prime}\right) \times \frac{\hat{\mathbf{R}}}{R^{2}}\right) d \nu^{\prime}$

- Using the product rule :
- $\underline{\nabla} \cdot\left(\underline{\mathbf{J}}\left(\underline{\mathbf{r}}^{\prime}\right) \times \frac{\hat{\mathbf{R}}}{R^{2}}\right)=\frac{\hat{\mathbf{R}}}{R^{2}} \cdot \underbrace{\left(\underline{\nabla} \times \underline{\mathbf{J}}\left(\underline{r}^{\prime}\right)\right)}_{\left.=0 \text { (because } \underline{\mathbf{J}}\left(\underline{\mathbf{r}}^{\prime}\right) \text { does not depend on } \underline{\mathbf{r}}\right)}-\underline{\mathbf{J}}\left(\underline{\mathbf{r}}^{\prime}\right) \cdot\left(\underline{\nabla} \times \frac{\hat{\mathbf{R}}}{R^{2}}\right)$
$-\underline{\nabla} \times \frac{\hat{\mathbf{R}}}{R^{2}}=\underline{\nabla} \times \frac{\mathbf{R}}{R^{3}}=\frac{1}{R^{3}} \underbrace{(\nabla \times \underline{\mathbf{R}})}_{=0}+\underbrace{\underbrace{\underline{\nabla} \cdot\left(\frac{1}{R^{3}}\right)}_{\text {Vector along } \underline{\mathbf{R}}} \times \underline{\mathbf{R}}}_{=0}$
- Hence

$$
\underline{\nabla} \cdot \underline{\mathbf{B}}=0 \quad \text { and } \quad \oint_{S} \underline{\mathbf{B}} \cdot \underline{\mathbf{d a}}=0
$$

