CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/~harnew/lectures/

LECTURE 12:

BIOT SAVART LAW & THE MAGNETIC DIPOLE

Neville Harnew¹ University of Oxford HT 2022

 $abla \cdot \mathbf{E} = rac{
ho}{arepsilon_0}$ $\nabla \cdot \mathbf{B} = 0$

With thanks to Prof Laura Herz

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

OUTLINE : 12. BIOT SAVART LAW & THE MAGNETIC DIPOLE

12.1 Example : B-field of a solenoid

12.2 Biot-Savart Law in terms of current density

12.3 The magnetic dipole

12.1 Example : B-field of a solenoid

Calculate the B-field due to a solenoid with current *I*, radius *a*, length ℓ with *N* turns. Sum over all contributions from all loops at a distance *z* (integrate from θ_1 to θ_2).

• Contribution from one element dz: $dB = \frac{\mu_0}{2a} \sin^3 \theta \, dI$ where $dI = I\left(\frac{N}{\ell}\right) dz$ along the axis of the solenoid.

►
$$\tan \theta = \frac{a}{z} \rightarrow z = \frac{\cos \theta}{\sin \theta} a$$

 $\rightarrow dz = -a \frac{1}{\sin^2 \theta} d\theta$

► $B = -\int_{\theta_1}^{\theta_2} \frac{\mu_0}{2a} \sin^3 \theta \frac{IN}{\ell} \left(a \frac{1}{\sin^2 \theta} d\theta \right) = -\frac{\mu_0 IN}{2\ell} \int_{\theta_1}^{\theta_2} \sin \theta d\theta$
► Hence $B = \frac{\mu_0 IN}{2\ell} (\cos \theta_2 - \cos \theta_1)$

Θ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

► For a long coil $\theta_1 = 0$, $\theta_2 = \pi \rightarrow B = -\mu_0 I \frac{N}{\ell}$ (sign depends on direction of current \rightarrow RH screw rule)

12.2 Biot-Savart Law in terms of current density

► The Biot-Savart Law :

 $\underline{\mathbf{dB}} = \mu_0 I \, \underline{\underline{\mathbf{d\ell}} \times \hat{\mathbf{r}}}_{4\pi \, r^2}$

Define *current density* <u>J</u>:

 $I = \underline{\mathbf{J}} \cdot \underline{\mathbf{da}}$

 $\underline{\mathbf{J}}$ is the current per unit area (a vector)

$$\underline{\mathbf{J}} = \frac{dI}{da_{\perp}} \times \left(\frac{\underline{\mathbf{d}}\ell}{|\underline{\mathbf{d}}\ell|}\right)$$

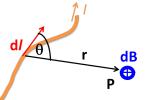
 da_{\perp} is the area perpendicular to the flow of current

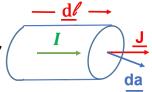
• Also since $\mathbf{J} \parallel \mathbf{d}\ell$

$$I \, \underline{\mathrm{d}} \ell = (\mathbf{J} \cdot \underline{\mathrm{d}} \mathbf{a}) \, \underline{\mathrm{d}} \ell = \mathbf{J} \, (\mathbf{d} \mathbf{a} \cdot \underline{\mathrm{d}} \ell) = \mathbf{J} \, d \mathcal{V}$$

• Hence $\underline{\mathbf{B}} = \int_{\mathcal{V}} \mu_0 \frac{\mathbf{J} \times \hat{\mathbf{r}}}{4\pi r^2} d\mathcal{V}$

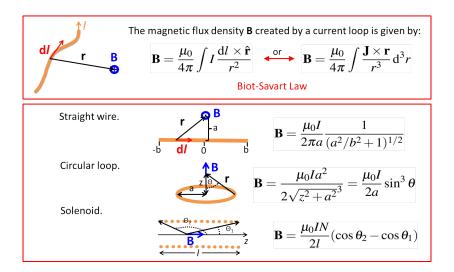
Biot-Savart Law in terms of current density $\underline{\mathbf{J}}$ integrated over volume $\boldsymbol{\mathcal{V}}$





▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Biot-Savart Law summary



12.3 The magnetic dipole

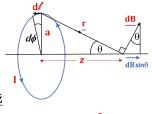
A small current loop defines a *magnetic dipole*

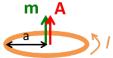
 Re-visit the field due to a circular current loop :

$$\underline{\mathbf{B}} = \frac{\mu_0 I a^2}{2(z^2 + a^2)^{\frac{3}{2}}} \, \underline{\mathbf{\hat{z}}}$$

In terms of loop area: $\underline{\mathbf{B}} = \frac{2 \mu_0 I (\pi a^2)}{4 \pi r^3} \hat{\mathbf{z}}$

 Compare this with the on-axis field of the *electric* dipole (i.e. for θ = 0) which has the same form :





◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

 $\text{Electric dipole}: \quad \underline{\mathbf{E}}_{\mathbf{r}} = \frac{2qd\cos\theta}{4\pi\epsilon_0 r^3} \, \hat{\mathbf{\underline{r}}} \ \rightarrow \ \underline{\mathbf{E}}_{\mathbf{z}} = \frac{2p}{4\pi\epsilon_0 r^3} \, \hat{\underline{\mathbf{z}}} \quad (p = q \, d)$

• Define $(I \pi a^2) = I A$ as the magnetic dipole moment m

Magnetic dipole moment $\underline{\mathbf{m}} = I \underline{\mathbf{A}}$ = [Current] × [Area bounded by the loop]