CP2 ELECTROMAGNETISM

https://users.physics.ox.ac.uk/~harnew/lectures/

LECTURE 12:

BIOT SAVART LAW & THE MAGNETIC DIPOLE

Neville Harnew¹ University of Oxford HT 2022

 $abla \cdot \mathbf{E} = rac{
ho}{arepsilon_0}$ $\nabla \cdot \mathbf{B} = 0$

With thanks to Prof Laura Herz

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

OUTLINE : 12. BIOT SAVART LAW & THE MAGNETIC DIPOLE

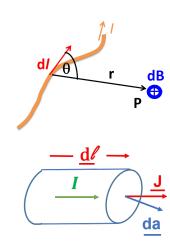

12.1 Example : B-field of a solenoid

12.2 Biot-Savart Law in terms of current density

12.3 The magnetic dipole

12.4 Example : B-field of a solenoid

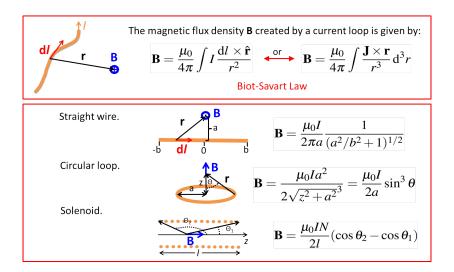
Calculate the B-field due to a solenoid with current *I*, radius *a*, length ℓ with *N* turns. Sum over all contributions from all loops at a distance *z* (integrate from θ_1 to θ_2).


▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

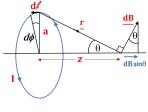
► Hence
$$B = \frac{\mu_0 I N}{2\ell} (\cos \theta_2 - \cos \theta_1)$$

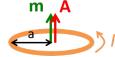
► For a long coil $\theta_1 = 0$, $\theta_2 = \pi \rightarrow B = -\mu_0 I \frac{N}{\ell}$ (sign depends on direction of current \rightarrow RH screw rule)

12.5 Biot-Savart Law in terms of current density


The Biot-Savart Law :

Biot-Savart Law in terms of current density $\underline{\mathbf{J}}$ integrated over volume $\boldsymbol{\mathcal{V}}$


 $\underline{\mathbf{dB}} = \mu_0 I \, \underline{\underline{\mathbf{d}\ell} \times \hat{\mathbf{r}}}_{4\pi \, \mathbf{r}^2}$


Biot-Savart Law summary

12.3 The magnetic dipole

A small current loop defines a magnetic dipole

<ロ> (四) (四) (日) (日) (日)

æ

Magnetic dipole moment $\underline{\mathbf{m}} = I \underline{\mathbf{A}}$ = [Current] × [Area bounded by the loop]