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Lecture 1

Introduction to the Course



1.1 Syllabus of the Course

1. Electrostatics

Coulomb’s law. The electric field E and potential due to a
point charge and systems of point charges, including the
electric dipole. The couple and force on, and the energy of, a
dipole in an external electric field. Energy of a system of
point charges; energy stored in an electric field. Gauss’ Law;
the E field and potential due to surface and volume
distributions of charge (including simple examples of the
method of images), no field inside a closed conductor. Force
on a conductor. The capacitance of parallel-plate, cylindrical
and spherical capacitors, energy stored in capacitors.

| 2. Magnetostatics

The forces between wires carrying steady currents. The
magnetic field B, Ampere’s law, Gauss’ Law (“no magnetic
monopoles”), the Biot-Savart Law. The B field due to
currents in a long straight wire, in a circular loop (on axis
only) and in straight and toroidal

solenoids. The magnetic dipole; its B field. The force and
couple on, and the energy of, a dipole in an external B
field. Energy stored in a B field. The force on a charged
particle in E and B fields.

| 3. Induction I

Electromagnetic induction, the laws of Faraday and Lenz.
EMFs generated by an external, changing magnetic field
threading a circuit and due to the motion of a circuit in
an external magnetic field, the flux rule. Self and mutual
inductance: calculation for simple circuits, energy stored
in inductors. The transformer.

4. Electromagnetic waves

Charge conservation, Ampere’s law applied to a charging
capacitor, Maxwell’s addition to Ampere’s law
(“displacement current”). Maxwell’s equations for fields
in a vacuum (rectangular coordinates only). Plane
electromagnetic waves in empty space: their speed; the
relationships between E, B and the direction of
propagation.




1.2 Structure of the Course

| 1. Electrostatics I

Charges create “electric fields” which
represent the resulting force experienced
by a small test charge.

E.da = 2

S (closed surfa(:e)g0

GAUSS LAW

2. Magnetostatics

Electrical currents create “magnetic
fields” which create forces on moving
test charges. There are no magnetic

monopoles. AMPERE’S CURRENT LAW

1
—¢B.dl=1
Ho

B.da=0

S (closed surface)

3. Induction I

A time-varying magnetic flux through an
area creates an electromotive force
along the area’s rim.

d
fE.dl:——fB.da
dt J

FARADAY / LENS LAW

| 4. Electromagnetic waves |

A time-varying electric flux through an
area creates an magnetic field along the
area’s rim.

1 d
—¢B.dl=1+ so—fE.da
Ho dtJg

Electromagnetic wave propagation




1.3 Book list

Introductory undergraduate textbooks on electromagnetism:

D. J. Griffiths, Introduction to Electromagnetism
Pearson, 4th edition, ISBN: 978 0 321 84781 2

1. S. Grant and W. R. Phillips, Electromagnetism
John Wiley, 2" edition, ISBN: 978 0 471 92712 9

E. M. Purcell and D. J. Morin, Electricity and Magnetism
Pearson, 4t edition, ISBN: 978 1 107 01402 2

P. Lorrain, D. R. Corson and F. Lorrain, Fundamentals of Electromagnetic Phenomena
Freeman, ISBN: 978 0 716 73568 7

Also of interest:

W. J. Duffin, Electricity and Magnetism
Duffin Publishing (out of print)

Feynman, Leighton, Sands, The Feynman Lectures on Physics, Vol Il
ISBN: 978 0 465 02382 0

W. G. Rees, Physics by Example
Cambridge University Press, ISBN: 978 0 521 44975 5




Electrostatics - problem sheets

1.1. Introduction: Properties of charge; Coulomb’s law
1.2. The Principle of Superposition

1.3. The Electric Field and Electrostatic Potential

1.4. Assemblies of discrete charges; multipoles

1.5. Continuous charge distributions

1.6. Gauss’ law

1.7. Poisson and Laplace equations

1.8. The Method of Image Charges

1.9. Capacitance and Energy of the Electric Field

—

I

Problem Set 1

Problem Set 2

Problem Set 3




1.4 Electromagnetism through the years

| Electrostatics I

Ancient Greece: rubbing amber against fur allows it to attract other light substances such as
dust or papyrus

Ear™a Greek word for “amber”:
' fiAektpov (elektron)

Magnetostatics

Magnesia (ancient Greek city in lonia, today in Turkey):
Naturally occurring minerals were found to attract
metal objects (first references ~600BC).

Crystals are referred to as: Iron ore, Lodestone, Magnetite, Fe;0,

Use of Lodestone compass for navigation in medieval China




Electromagnetism through the years

| 17t century AD to mid 18t century: |

Dominated by “frictional electrostatics” :
¢ When two different materials are brought into contact,
charge flows to equalize their electro-chemical
potentials, bonds form across surface
* Separating them may lead to charge remaining

unequally distributed when bonds are broken
* Rubbing enhances effect through repeat contact

Focus on “electrostatic generators” — today’s van
de Graaff Generators:

Machines involved frictional passage of
“positive” materials such as hair, silk, fur, leather
against “negative” materials such as amber,
sulfur




Electromagnetism through the years

From late 18t century: | Rapid progress on both fundamental science and technology:

1784: Charles-Augustin de Coulomb uses “torsion balance” to show that forces between two
charged spheres vary with the square of the inverse distance between them.

1800: Alessandro Volta constructs the first electrochemical battery (zinc/copper/sulfuric acid)
allowing high-density electrical energy storage

1821: André-Marie Ampeére investigates attractive and repulsive forces between current-
carrying wires

1831-55: Michael Faraday discovers electromagnetic induction by experimenting with two co-
axial coils of wire, wound around the same bobbin.

1830ies: Heinrich Lenz shows that induced currents have a direction that opposes the motions
that produce them

1831: first commercial telegraph line, from Paddington Station to West Drayton

1864: James Clerk Maxwell introduces unified theory of electromagnetism, including a link to
light waves

1887: Heinrich Hertz demonstrates the existence of electromagnetic waves in space

Late 19t century: development of “wireless telegraphy” — radio!




Electromagnetism in everyday life

Electrostatics Magnetostatics




1.5 Summary of the properties of charge

Both positive and negative charge exists (triboelectric experiments showed
electrostatic attraction and repulsion)

@ @ ® @

Charge is quantized (Millikan experiment, 1913): e=1.602x102° As

Coulomb’s law (1785): the force between two point charges varies with the
square of their inverse distance: 1 qiq2

= Iy

Amey r?
Superposition: The force between two point charges varies linearly with the
amount of each charge, hence the forces resulting from individual charges
superimpose in an assembly of charges: F= F,




1.6 Properties of charge: Millikan Experiment

Millikan experiment, Phys. Rev. 2, 109-143 (1913):
ﬁ Sehaut

& comprestion
s

—Water bathte — -

—supress@hermal —

Observe oil droplet >-0JEEHE
motion in a w d

lonize oil
droplets with
7 || xrays

homogeneous
electric force field

» Millikan oil drop experiment : observe small oil drops inside a
parallel plate capacitor.

» Qil drops became electrically charged through friction with the
nozzle as they are sprayed (or alternatively ionize with X-rays).

» Oil drop soon reaches terminal velocity due to friction with air.
13



Properties of charge: quantization

Stokes’ Law : retarding frictional force on sphere moving in
viscous fluid —  Fsokes = 67nrvr

[n = dynamic viscosity, r = sphere radius, vt = terminal velocity]

1. No E-field Fg = Fsiokes - particle moving with V7 (measure)

> Determine r = / ;22— and d

> mg = 4%rrS(Poil — pair)9 = BmnIvy T I
E =
i F

l g
hence Fg = 1870VT\/% _,' 2 ,._
r

2. Ramp E-field until particle levitates (v = 0, Fity = 0)

» F;=gE — determine q

» Millikan found : g = Ne (N an integer) with
e=1.592 x101°C

» Charge is quantized

4
d



1.7 Properties of charge: Coulomb’s Law

Coulomb’s Torsion Balance experiment, Histoire de I’Academie Royale des Science,
p. 569-577 (1785):

Mo e ot o e S5 iy 0 0

Measure force between two
charged spheres through torsion
L~ force on wire:

1
Hefound: [ oc —
72

1 qiq2
r
4re r2

Coulomb’slaw: F =

A
£ = 8.854x 1071225
Vm




The relative strength of the Coulomb force

Coulomb 1785 : Magnitude of the force between two point
charges gy, g2

_ 1
Felec = e q;gz

Newton 1665 : Magnitude of the force between two point
masses my, mo

mym
Fgravv:G 1,22

For two protons :

Fgrav _ Mp\2
Fooe G x 47T60(?)

=8x107%7 1l

The electrostatic force is many magnitudes stronger than
the gravitational force.




1.8 The Principle of Superposition

The principle of superposition states that, for all linear systems,
the net response caused by two or more stimuli is the sum of
the responses that would have been caused by each stimulus
individually.

The force on charge g; originating from all other charges g; is given by:

4 « g Lt
j i A
Fj= 4re, Z _2rji 9 r,

i#j Ui a4

Example 1: force on charge -2Q resulting from two charges Q in the corners of a
triangle:

V30® |

= < ¢
2mega’




Principle of Superposition
Start with two charges q; and q; separated by r;;
F;; is the force on g; due to g;

99 4 A

= By = gz Ty where iy = 1y /[y

Next go to three charges : total force on charge qq

Fo=Fy0+FEy Lij O F
F,=-%% ¢ 4 %% 3 O T —j
=0 47reor120 =10 47reor220 =20 q; q;
In general : O q
a0 @)
— _1 99 r
Fy = ares 2i(iz) 2 Lij 10 -
! 90 -20

Principle of Superposition also
1

F; -
works for Gt = g7 Yiisy) ¢ By ,/ 0
This is a vector field that only depends on the distribution
of other charges : the electic field generated by the other
charges.



Example 1 : principle of superposition

Three charges arranged at corners  +@Q
of an equilateral triangle, +Q and <
+Q on top, —2Q on the bottom.
Calculate the force on —2Q.

2Q-Q ¢ 2Q-Q i
E_2Q 47r€0r2 Ti0 Tz 471'60I’2 T20

— F_2q = 572 (10 + E20)
~ 1 +a/2 . a 1 _a/2

Now £, = 5 _\/m 1o =5 | _ /2 — &4

Poop 1 +a/2 —a/2 B 0

FOTE0 " A\ _\/3a/2—v/3a/2 ) T\ V3

Hence F_,q = 2% (0>

2mega? 1

This is as expected : there is only a y component of F due
to symmetry.



Lecture 2

The Electric Field and Potential
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2.1 The Electric Field

» The electric field at point r, generated by a distribution of
charges q; is defined as the force per unit charge that a
test charge would experience if placed at r.

A

— a point test charge g due to a field E experiences Ve F
aforce F=q-E =29 dq

= 47T60f2 £ E
» Electric field due to a point charge Q at the origin: r
always points away from + charge (radial) o+Q

A E

» The principle of superposition holds for the electric field :
the electric field generated by a distribution of charges is
equal to the sum of the electric fields generated by the
individual charges.
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2.2 The Electrostatic Potential

Work done to move a point test charge g from Ato B
Wag =~ [{PF -dl=—q [[PE-dl

The electrostatic potential difference between A and B is
defined as the the work done to move a unit charge
between A and B

Since the work done is related linearly to the electric field,
the principle of superposition also holds for the work done.

Note that any field configuration can be made up of the
sum of infinitesimal point charges. So we can now check
that the work done by moving a test charge through the
electric field of a point charge does not depend on the path
taken.



The Electrostatic Potential

For a point charge charge Q :

23

>

>

—_1 Qg z
E_47reor2£

Work done to move charge g from Ato B :
Was=—q [, E-dl

In spherical coo[dinates D
dl = adrt + rdod + rsin0deog

Hence E-d/ = ;& 1ar

4meg 2

— B 1 Qy_q.Q (1 1
WAB - _qu 4meg rizdr - q471'€0(5 - a)

Hence energy required to move test charge from Ato B
depends only on initial and final radial separation, and
independent of path.

Electric field is conservative



2.3 The Potential Difference
Define electrostatic potential difference

VAB_ M;AB :_fAE dﬂ 47reo(r175_ll,q)
» The potential of a point charge Q at a general point r is
givenby: V(r)= 2 (7 - 1)
here the second term is a constant (which is often set to
zero by taking V(r — o0) = 0)
» Again, since E and V are linearly related, the Principle of
Superposition also holds for V.

Potential at point P due to an assembly of charges Oq,

» V(r) = 4,r€0 Do |r '+ constant 7
The field due to the assembly ; 0./2'%2
- B() = 41 O plpE T /x
wherer —r; = =% pL——0a

[r—r]

24



Summary of Relationship between Electric Field and

Potential

The electric field E at a point r, generated by a distribution of charges g, is equal to

the force F per unit charge g that a small test charge g would experience if it was
placed atr:

E(r) = F(q")

The electric potential V at a pointr is the energy W required per unit charge g to
move a small test charge g from a reference point to r. For a system of charges:

W(r)
q

The electric field and potential are related through:

V(r) =

V(r) = ~/r:E(r’)'dr’ s E@)=-VV(r)

25




2.4 Calculating the field from the potential

Revisit example 1 : Calculate the electric field generated by
charges +Q and +Q, located on an equilateral triangle, and felt

by “test charge” —2Q at the origin.

» Reminder from before, force on —2Q

0
_ A/3@?
E*2Q T 2mepad? ( g) )

» Field E atr = (0,0, 0) = force/unit charge

0 0 e
E— 1 ¥3% 1 |__4&o —2eQ
= Q 27mepa? T 4mepd

0 0

» But now adopt a different approach : derive the electric
field from E(r) = —VV and evaluate E at the origin.

26

=
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1. Calculate the potential due to Q and Q at a position r

_ 1 Q Q
g V(£) T 4meo (|£*£10‘ + |£*220‘)

_ 1 +Q 3
- e { [(a/2+x72+(av3/2—yp+22] /2 1 K777
+ 1 } ‘ R0
[((a/2-x2+(av3/2-y)+22)/* [ a3 @
2. Derive E(r) from V(z) : :
, |
&
EZ—VV:—(%V)V -2Q
oz
> hE=- 47960 x

, 2(a/2 + x)
—-1/2
((a/2+x)2+(av3/2—y)2+22)°"* 72(3\/252/2 o

e —2(a/2 - x)
((a/2—x)2+(av3/2—y)2+22)"/? —2(a\§2/2 )
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3. Calculate the field at position r = (0,0, 0)
> E = + Q

4reg

a/2 —a/2
@i | V32 |+ e | V3402
0

a/2 —a/2
() ()
0

0

» Hence E = —426{22 1

Which is identical to the previous calculation using vector
sum over fields.

)
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2.5 Energy of a system of charges

» Calculate the energy to bring i charges up from infinity
whilst keeping all the other charges fixed in space

U = the first charge gy : none qlL*.o
+ the second charge @ : g ( 47r€0r12)

+ the third charge g3 : g3 (MEO% + 4ﬂ§§r23> LI g

T34

+ the fourth charge qs : qa (47r50r14+ ®_ 4 & )

ATegrag 4megrag
» + etc, up to the i charge

» Compare to W, the sum over potential energies
experienced by each charge from all other charges:

.
W =379 Xjsi) dmeor;
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In matrix form :

» U=
0 0 0 0 g1
1/f12 0 0 0 (o)
1/r 1/r: 0 0
(919203 --9i—1a)) /13 /23 qs
/i 1/rki—g - 0 0 Qi—1
1/nj 1rai -+ 1/ricq; O qi
and where
W =
0 1y - A/riiqq 1/ry ol
1/r2 0 R VA R VA g2
1/r 1/r. s/ 1/r
(91 G205~ Gi-19)) /s ftes o Whiaa 1t *
1/nji—1 /i - 0 /01 Gi—1
1/ni LV2 TR V) R 0 qi

» Hence U = 1W = Z, 2qIV where V; = Z/ (#) 47r€0”//

» The energy U required to assemble a system of charges

from infinity (whilst keeping all charges fixed in space) is
half the energy of the sum W over potential energies
experienced by each charge from all other charges.
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. Charge Q in potential of Q & —2Q

. Charge Q in potential of —2Q & Q

Energy to assemble the system in Example 1

. Charge —2Q in potential of Q & Q

_ Q Q \_ _ @ y
ai Vi = -2Q <47Teoa + 47reoa) — T Tea +Q 2% +Q

q2V2:Q( Q +—2o):_ @2

4repa 4mepa 4repa

QRVo=q3V3 = —47?;, (symmetry)

_ZZq’ E 7'(503(1+2X7)

3@
4rega

Negative, since predominantly attractive forces.




2.6 Summary: assembly of discrete charge systems

The Electric field E and Potential V of a distribution of point charges g; placed at
positions r; are:
r—r;

E(r) = 4me ZI’ (r—r;)? |r—ry

V(r)=

=Y
drey 5 |r — 1l
The energy U required to assemble a system of point charges g; by bringing them to
positions r; from infinity is given by:

1

:% i QZ—Z—Z%;

i#j i
where V;is the potential experienced by g; at r; from all other charges g;.

32




Lecture 3

Electric Multipoles
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3.1 The potential due to an electric dipole
Two charges +q and —q separated
by (small) distance d
Define dipole moment : p = qd
Potentialat P: V = Cf,

Cosine rule :
rys— =+/r>+(d/2)? ¥ drcosf

47Teor+ " Ameqr—

1 _ 1
» V= 47T€of <\/1+(d/2r)2(d/r)cos€) \/1+(d/2r)2+(d/r)cose>
» Look at the field d << r:

Expand : \/11? — (1= Ix+ L (=D 4,

retain terms only up to first order of d/r
» V=32 ((1+(d/2r)cos0) — (1 - (d/2r) cos 0))

V = qdcosf _ PTr
T 4megrz T 4meprs




3.2 The field of an electric dipole

v

= . _ Qgdcosd
Use E(r) = -VV; V=70
1. Spherical polar coordinates
E — _9V _ 2gdcosf _ 2pr
F'—= "0r = 4rer? T 4meort
_ 10V _ qgdsinf
Ep= T r o0 T 4mweprd
1 9V _
E¢ — T rsind 9 — 0

E, = _ov_ o (. pz
ox ox 4meg(X2+y2+22)
E,—_9V _ _p 3z
Y = 0y T 4mey 1S
E, —_9V__ b (1 _ 322
Z7™ 0z T 4mey \ I3 &

35

0190 1 0
ar’ r 90’ rsiné

-

E-field'lines

NI
N———
|

P_(8cos?0—1)

T Ameprd



v

v

v

v

3.3 The torque on a dipole in an external E-field

Torque (couple) on the dipole :
T=>5r; xF;

Taking moments about the centre
point between the charges :

I =2 ((Q/z) X quxt) = q@ X Eext
T= P X Eext

Magnitude of torque from cross
product :

L] = |p||Eext| sin0

There is only a couple : no
translational force.

36



3.4 The energy of a dipole in an external E-field

» Calculate the work done by an
applied force to rotate the dipole
from angle /2 to ¢

(take 6 = 7 /2 as the zero of F=+aE ox
potential energy) -
> W = fg Tde, = fg p Eext Sin 9,d9' Eext
2 2

» W= [_ P EeXt Ccos el]fr/z E='quxt —0—q

_—

= —p EgxtcOSH
» Hence potential energy of p in E. :

U= —pEetCcost) = —p-Eq

37
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which both look identical at long distance

Cosine rule : ry o = V/r? + & F 2ar cos

Potential at P :

V= 29 q _ q
dreo | 1 r/1+( a/r )2—2(a/r)cos 6  r+/1+(a/r)2+2(a/r)cos

- :—i—x =11 -Ix+3x2+..)
Retain only up to powers of (a/r)?
V= (29— q{1—3(2)2+ 2cosd + 3(2)%4 cos?0}]
—[g{1—%(2)?> — 2cos 0 + £(2)%4 cos? 6} ]
= gor [+(2)? — §(9)%4 cos?0]

dreqr r

Expand :

1
dreqr

(

Quadrupole potential : V' = 222 r3(1 — 3cos?6)



Summary: Electric dipole and quadrupole

Electric Dipole

Far-field (r >> d) potential:  y/ — P ¥

- 3
-q p=qd 4reyr
2p-r d sin 0
Far-field (r >> d) electric field: E, = p 0= q4smu Eq) =0
dmey rt 4meyr3
Energy of dipole in external electric field E: W = —Egx - P
Electric Quadrupole: -q e
I ”
+2q o :—3(17300526)
Ia Ameyr
qd e

39
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3.6 The general multipole expansion

Potential at P: V(r) = 47r€0 i L

Ti

/
wherer; =r —r; ﬂ .
) r
Cosinerule: r/ = \/r2 +r2 —2rrjcosb;

2
—r\J1o2mest Lo Ay
For points P far from the charge assembly
r<<r —sx<<i

A== (1= x4

Retain only up to powers of (r;/r)?

Expand :

T [”r'cose zr2+zr2C0329+ }

:1+r'°°se'+ 1 (3cos?0; — 1)+

r



The general multipole expansion

1 qi 1 qir; cos 0;
» V = =
(r) 4reg ; r * 4reg Z r2

J/

monop;&e term dipo?erterm
N 1 Z%q,-r,?(SCosze,-—U .
dreg re

i
/

~
quadrupole term

» So any assembly of charges can be described in
terms of the sum over contributions from multipoles

» The n-th multipole potential falls off with 1/r"

41



Lecture 4

Continuous Charge Distributions



4.1 Continuous Charge Distributions

» Reminder : the potential at P, position

vector r, due to assembly of charges : Riciple 4 \=T-R,
) R; —_
V() = ¥, V@) = £ 3, & BT,
(where r; =r — R,). Y r
. . Continuous
> Andthe field : B(r) = o1= %, o2 & g e
» For a continuous charge distribution R

Z,-V,-—>de

Hence V(r) = z1- [ 2

|r
» Integrate over all infinitesimal dq over the charge distribution,
noting that g = g(R)

1, p®) IV oer volume I/, where p(R)

» Alternatively V(r) = —R|

is the charge density.

47reo

> Similarly for the electric field E(r) = ;1 [, %dv

T 4dmeg
43



Continuous Charge Distributions

Continuous charge distribution: R o
dg
V= [ ——
ZV,- — /dV Q} y /47t£0|r—R|
P

Line charge: Surface charge: Volume charge:
dg=Ad/ dg=0dA dg=pdV
dg

v

Choose a convenient origin O suiting the geometry of the charge distribution!

Adopt the notation: A = charge density for 1D distribution,
o = charge density for 2D, p = charge density for 3D

44



4.2 Example 1 : uniformly charged annulus

Uniformly charged ring.

A
E \o

O -

28

V4

E— 1] [ z
2¢0 (Va2 + 22

RV ES

\/b2—}—z —\/az-l—z}
0

E

45




Uniformly charged annulus
Annulus contains charge q. Calculate the potential V on the annulus

axis at a distance z above its centre. Note the radial symmetry.

Charge density ¢ . Charge dg contained in y
infinitesimally thin ring of radius r :

— dq = area x charge density = 2xrdro

Potentialat P: V = 47260 fab %

V= 1 b orrdro
T 4rme Ja /12472

fb rar

a \/reyz2

V= ZVr2+ 223

== [\/b2+22—\/az+22}

From symmetry, E field points along

z-axis: E= -2 2V(2)

|2

|

€0

N

E=>2% Z_ £ Z
= 2 {\/32-1-22 \/b2+22} -

46



Special cases

0
s V=g \/b2+z }

2. Disk(a=0)forz>> b (far away)
- V=g |2 V/(b/27 1 - 2]
Use /1 + (b/z)2 =1+ }(b/z)? + -
» V= 2‘;(24—%—2): j{egi. But o =% :
» Hence V = 47T€ (point charge)
» Using same method: E = 4mozzz

3. Disk (a=0) forz << b (close to plate)
» V=g-b & E=5-2 (‘infinite” charged plane)

47



4.3 Example 2 : uniformly charged rod

Uniformly charged rod.

—b

A [ 1 B 1 ]
Y dney | Var 2 Va1 b?
—A { c b
y = +
dreoa [va2+c2 Va2 +b?

|

48
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Uniformly charged rod

Calculate the field E at a distance a
from a uniformly charged rod, with
length between coordinates —band ¢. _,

Charge dg contained in a small element
dx, where dg = \dx :

> E= g IS 2da
Integrating components:

. E. — —xA _ A 11
E 47r50 f b 32+X2)3 dx 4meg /@242 /@21 b2

_ 1 c —a\ d X _ 1
EJ/ T 4meg ffb (2+x2 ax |:USE B

—
NI

>Ey_

—x/a ¢ — = c + b
47reo (32+X2)1§ b 4repa \/a2+02 \/a2+b2
» E; =0 (symmetry)
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Special cases

1.b=c=1¢/2
» E, =0 (cancellation by symmetry)
> D S S
Ey 4drega \/m

2. b=c—

» Ex =0 (symmetry)

> Ey = —5 (radial field)

» Note that this configuration is most easily solved via
Gauss Law (see next lecture)



Lecture 5

Gauss Law



5.1 Introduction to solid angles

» Consider an element of area on a
sphere. Define a vector of surface
element da normal to the surface :

» da = (rsinfd¢) x (rdd) &

da =r?sin0dfdo i
—_——

» Define dQQ =sin6dfd¢ as a solid
angle element.

(note that dQ2 is independent of r)
» Hence :
2 T
fsurface dQ = fO fo sinfddfd¢ = 4n

52

rsin® do



5.2 Gauss’ Law

Calculate the flux d®g = E - da through an infinitesimal area
da of surface S at a distance r away from a point charge q

» ddg=E-da=E-dacosa Surface S

» Note that (da cos «) is the surface element
da of S resolved onto the sphere centred
on charge g

» Hence dog = ( q r%) - (r?sin6 do do )

4Teq

= 1 sin# df d¢ independent of r
—_——

47eg

aQ

» Therefore for any closed surface

fﬁc/osedE'@:g % HencefE'@:g
surface 0 0
» It does not matter WHERE q is inside the surface for this to

hold (because flux dog is independent of r) !
53



Gauss’ Law

{ < ifqis INSIDE closed surface

0 ifqis OUTSIDE closed surface

INSIDE OUTSIDE

outward
fl

outward

Components of §s E.da cancel
flux

E = Qf4meqr?
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5.3 Gauss’ Law for a collection of charges
> §E;-da= 2 forany charge enclosed
» Apply the principle of superposition

$>E;-da= M (> E; is the sum
of field components on the surface)

» GausslLaw: §sE-da= &

€0
E is the field at surface S

Qu =Y, q; is the total charge in the
volume V enclosed by surface S

» For a continuous charge distribution,
density p: Qu = [, p(r)dV
» Gauss Law allows finding the total charge enclosed inside a
closed surface if the field is known on the surface, and vice versa

» Allows a straightforward calculation of field for symmetrical
charge configurations
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Gauss Law : summary

Area and Solid angle elements:

da =r2sin@ dO d = r2dQ

Calculate electric field flux d® through area da for a
point charge g; a distance r away from da:

d® =E,.da =

Integrate over a closed surface:

; $dQ
é El.da:q_f—=
s & 4n

qi ifgq;is
5 enclosed

if g;is not
enclosed

4meg r?

4T #2sin6dode

r!

_ i sinf@d@d¢ Independentof
4mey

Principle of
superposition

d

Gauss’ Law;

jg E.da =/—
s/ €o
E-field on total charge|

closed surface enclosed
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5.4 Example : Spherically symmetric charge distributions

1. Point Charge Gaussian E/'
> By symmetry : E=Er surface /d'a
da=r?sinfdidoi=r>dQi -
> $sE- da = E §sr?dQ = E4rr? = 4
» E = .~ as expected

47re

2. Hollow sphere, radius a, with g evenly
distributed on surface.
» Inside sphere (r < a):
fﬁSE da — FE. 47Tr2 _ Qenc/osed =0
» No charge enclosed — E 0
» Qutside sphere (r > a):
fsE da — E . 4qr2 — Yenclosed — 9

€0 €0
» E= 4mor2 as for point charge
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Lecture 6

Gauss Law Examples



6.1 Gauss theorem : uniform volume charge

Sphere with uniform volume charge density

W for0 < r < a (inside)

> p =
0 fora < r (outside)
> $sE-da=_ [, pdV
(volume I bounded by surface)

» Inside sphere :

E-4nr?= 47 r2dr
—_———

volume element

2 3 .
=205 3 dr = 275 (volume ratio)

1 q
€ fo (4/3)m a8

Linear

> E=glsr  (radial) Ear Eol

! ! 2

» QOutside sphere : ! ! "
SSSE -da = % —a 0 a r

» E=2z15 (pointcharge again)
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Summary Gauss Law : spherical symmetry

Spherically symmetric charge distributions.

1 1
E.da =E ><47z:r2:—/ dav —— Ezi/ dv
£ " =) vp " 471780}’2 Vp

(i) point charge q: q
r = 72 forany r
dreyr

(ii) hollow sphere with q spread evenly across surface:

For 0 <r <R (inside sphere): Er = 0

For R < r (outside sphere): Er — L

4megr?
(iii) Sphere carrying uniform volume charge p:
q r

,,,,,,,, For 0 <r <R (inside sphere): E, = —— —
?' " 4meyR2 R
o For R <r (outside sphere): Er = q

 4megr?
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6.2 Gauss Theorem : Long, uniformly charged rod

» Long, uniformly charged cylindrical rod with
surface charge g

» Choose cylindrical Gaussian surface
Symmetry : E is in the same direction as da

g9 1 _ ) .
- E= {2megr ~ 2meol (radial)

A is the charge per unit length
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6.3 Uniformly charged infinite plate

. Uniformly charged “infinite” plate of area A
By symmetry: E-da=E-da (E | da)
$sE-da=FE-2A=2

(factor 2 due to both sides)

- 19_ o
E_260A_2€0

Field is uniform. ¢ is the charge per unit area

As the plates become very large, the contribution
from the edges become negligible

. The capacitor

Principle of superposition between the plates
E=2°2 _-—9_29

2 €0 2 €0 €0

Outside the plates  E = 3%+ 52 =0
62
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6.4 Electric field inside a conductor

Inside a conductor, one or more electrons per atom are free to move throughout the
material (copper, gold, and other metals). We are considering electroSTATICS (static
charge). As a result:

(i) E=0inside a conductor (free charge moves to surface until the internal electric
field is cancelled).

(ii) p=0inside a conductor (from Gauss’ law: E=0 hence p=0).
(iii) Therefore any net charge resides on the surface.
(iv) A conductor is an equipotential (since E=0, V(r;)=V(r,)).

(v) At the surface of a conductor, E is perpendicular to the surface (otherwise
charges will flow until the tangential component becomes zero when

equilibrium is reached).
fE da = 0

|n5|de v

E
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Properties of conductors

1. E = 0 inside a conductor

» We are dealing with electroSTATICS - charges can

move in an E-field !

» They will move to the surface, creating surface

charge which opposes applied field.

» Equilibrium reached with E = 0 inside conductor.

2. p = 0inside a conductor :

> fsE-da_ J, pdl

» Alternative treatment for the capacitor :

-9 -9 _a
EA+O—€0 — E = A = o
Where the “0” term is the field inside the plate

» Potential difference between plates
V=—{E dt=—Ed

64
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E =0

/ﬂ—d—»\

Charge on SURFACE of plate




v

v

v

v

6.5 Revisit the electric field inside a hollow sphere
Consider an uncharged hollow metal sphere of finite thickness, with
point charge +q at its centre.

Inside hollow :

§sE-da=F -4rr2=2

Inside metal E=0:
$sE-da=(q+qi)/c0=0

— Inner surface charge g1 = —q must be

induced on inner surface

Outside sphere :

3§ E. -da= &f%te
S§= == €0

Because there is no net charge on the sphere / 5 | ;\
0

— Quter surface charge givenby g1 + g =0

— @2 = +q is induced on the outer surface — Er — 4megr?
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Lecture 7

Laplace & Poisson Equations
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7.1 Poisson and Laplace Equations
The expression derived previously is the “integral form" of
Gauss’ Law
]
$sE-da= “ [, pdV over volume

We can express Gauss’ Law in differential form using the
Divergence Theorem :

[, (¥ -F)dV = §;F -da [F is any general vector field.]
Hence [,,(V-E)dV =L [, pdV

. . _p
This gives V-E=F

the differential form of Gauss’s Law
Using E = —VV get Poisson’s Equation for potential V

VeV =_2
A% “
In regions where p = 0 we get Laplace’s Equation:
VeV =0 (zero charge density)



7.2 Uniqueness Theorem

This states : The solution to Laplace’s equation in some volume
is uniquely determined if the potential V is specified on the
boundary surface S. Why is this so?

» Suppose there are TWO solutions
Vi and V5 to Laplace’s equation for
potential inside the volume

> 22 V1 =0 ; 22 V2 =0 V specified

and V; = V, on the boundary on this N
surface S surface

Surface S

Uniqueness :
only ONE
solution for V
(inside volume)

» Define the difference V3 = V4 — V> vh{s walnted i(p
this volume (in
Then 22 V3 = 22 V1 — 22 V2 =0 which p=0)

(V5 also obeys Laplace’s equation)
» But on the boundary V3 =V; — Vb =0
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Uniqueness Theorem continued
From the previous page :

Surface S

e Uniqueness :
i S only ONE
» V2V, =0 & V2V, = 0 with V; = V4 on the surface o\ X‘So.lmwv
V specified ‘ P ; )
» V3=V, — V> (which = 0 on the surface) surfa:g\/ \/
2 N \ Vis wanted in
» V*V3 = 0 everywhere. S JRewdd

which p=0)

» The V2 operator is a three-dimensional second derivative of a function -
when a function has an extrema, the second derivative will be negative
for a maximum and positive for a minimum.

» The fact that the second derivative is always zero therefore indicates
that there are no such minima or maxima in the region of interest

» Hence solutions to Laplace’s equation do not have minima or maxima.

» Since V3 = 0 on the surface, the maximum and minimum values of V3
must also be zero everywhere inside it.

Hence V3 = 0 everywhere, and V must be unique

» Note the same applies to Poisson’s equation.

> 1f V2V, = —p/ep and V2V, = —p/eg, then V2 V5 = 0 as before.
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Poisson and Laplace Equations : summary

J

Gauss’ law: V-E = ﬂ Definition of Potential: E(r)=—-VV(r)
. &
T
ViV = — b Poisson equation
&
In regions where p=0: V2V — ( Laplace equation

Uniqueness Theorem:
specified:

(ii) The value of V on all boundaries

(i) The charge density throughout the region

The potential V inside a volume is uniquely determined, if the following are
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7.3 Laplace equation in cartesian coordinates

Example : Solutions to Laplace’s equation for a parallel plate
capacitor. Symmetry suggests use of cartesian coordinates.

et gz Tz =0
%,_/

>

0 (by symmetry)
Need to solve Z 8)(2 =0
b »W:C1—>V():C1x—|-02
E L » Values on boundary defined by capacitor plates :
X Vix=0)=VW and V(x=d)=0
0o d

> XZO, CQZVO and
x=d, Cid+C=0 — C4 :—Vo/d
» Solution : V(x) = W(1—x/d)

» Electric field E_—VV_—(9 Vx - E=

SIES
[

X
7



7.4 Laplace Equation in spherical coordinates

. assuming azimuthal symmetry.

General solutions to Laplace’s equation for charge distributions with azimuthal
symmetry (mainly for information here : see second year).

10 [ 40V 1 0 oV 1 92V
V=5 —(r— |+ —5——-= 0 -5 =
v 2 0r (I or ) * 2 sin 6 00 ( s )9) + r2sin? 0 002 0

Separation of variables yields the general solutions: =0
> B
V(r,0)= IZ(’) (Alr o ) Pi(cos 6)

where A, B, are constants determined by boundary conditions and P, are Legendre
Polynomials in cos 6, i.e.:

Py(cos0) =
By B P,(cos0) = cosO
V(r,0) =A¢+ — +Ajrcos8 + — cos ?] P,(cos0) = %(3(:0529_1)
Etc ...

1 By 1
—|—A2r2§(300529—1) —32

§(3cos29—1)+~-~
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Laplace equation examples in spherical coordinates

1. Take a defined small spherical volume which contains
some azimuthally symmetric charge distribution :

» QOutside the volume p =0

» Boundary condition on potential : V — 0 asr — oo

» Hence A, =0forall ¢

» Retain just multipole expansion terms (monopole +
dipole+ quadrupole + - - - terms)

2. Special case of spherically symmetric charge distribution
inside the volume :

» Outside the volume p =0, V2V =0 with no 6
dependence

» Ay =B, =0 for 5#0

» V(r) = Ao+ By/r as expected from Gauss’ Law



L ecture 8

Method of Images
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8.1 The method of images

» The method of images is useful for calculating potentials

created by charges placed in the vicinity of metal
conductors.

Replace conducting elements with imaginary charges
(“image charges”) which replicate the boundary conditions
of the problem on a surface.

The Uniqueness Theorem guarantees that within the
region bounded by the surface, the potential calculated for
the “imagined” charge distribution is identical to that of the
“real” situation.

If a suitable replacement image charge distribution is
chosen, the calculation of the potential becomes
mathematically much simpler.



8.2 Example : Point charge above a metal plate

Point charge a distance d above a grounded metal plate:

» Boundary conditions

1. At the metal surface (z = 0), the parallel component of E = 0.
Field lines are perpendicular to the surface.

2. Surface is an equipotential — V =0

3. Far from the charge and metal plate :

2 2 2 2
Xty +28>>d° V=0 » The two configurations share

the same charge distribution
and boundary conditions for
the upper volume half.

» The Uniqueness Theorem
states that the potential in
those regions must therefore
be identical.

Surface of conductor

» In the upper half, the fields in

both scenarios are identical.
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Point charge above a metal plate, continued

Above plate : real (physical) region.
Here find solution at point (x, y, z).

Below plate : imagined "mirror charge" z

V(X> Y, Z) =

1 q - q ] rge
o | VOR+y2H(z-dP) Ry H(ztd?) |

Gives :

1. V=0 when z=0
2. V= 0forx2+y2 + 22 >> d?

— correct boundary conditions
— unique solution!
E then calculated from E = -V V
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8.3 Induced surface charge
» At the metal surface

E =0, E. =—%% (zisthe normal E

coordinate) o i . i _ HJ,Hi“

» Gauss Law at surface for element da: : :
E-da:EL~da:M E ]

€0
where cinguced = Qinduced/da. No E-field \

in the “virtual” conductor E=0 inside metal

> S0 Ginguced(X, ¥) = €0 EL = —€o 2%
» For the case of the point charge above the metal plate
ov —2x1xq(z—d) —2x 1 xq(z+d) ]
- 3
2

> 8z = Zne 3
> Lodtyze-ap?  (eryrr(zeap)

. vy 1 qd
> U/nduced(xa Y) €09z ’270 o [(x2+y2+d2)g}
this is the surface charge in the x — y plane

> Oinduced 1S Negative, and largestforx =y =0
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Total charge induced on the plate surface

» Now switch to polar coordinates (radial symmetry) :

1 qd = qd
» 0-. p— - 3 - T or
induced 2 [(x2+y2+d2)g] 2m |:(r2+d2)g:|

Qinduced = fo 27” ar )

=l (_217) [ 5 (2mr dr)] z /dr

(r’+d?)2

qd

\ r2+d? x

» The total charge induced on the plate is just —q, as would
be expected.



8.4 Force between the charge and the plate & energy stored

1. Force between the point charge and the plate :

» Reduces to the case of the force between 2 point charges :

_ 1
F= 4req (20’)2 z

2. Energy stored in the electric field
» Bringing in charge from infinity - but noting the separation

must always be maintained at 2z to preserve the geometry
and potential of the plane.

W:—de-ﬂ:Jr‘h:—eofd g
» W= 4,rEU (%) 1%, = *161“0%
Compare this to the case of bringing two point charges together
from infinity to separation 24, with the first charge fixed in space.
» Bring charge +q up to d needs no work (V+ 47“0,)

» Secondchargeatr=2d: W= —-qV, = —%

» This is a factor 2 greater than bringing charge up to a plate
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1.
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8.5 Image charges due to a pair of plates

Image charges required to
replicate the field due a
charge g located between
2 grounded semi-infinite
plates with a 90° angle

Image charges required to
replicate the field due a
charge q located between
2 grounded semi-infinite
plates with a 45° angle

«— g —| «— g — +q

i
|
i
i

v
i
i
i
|
T - ///////////////////
i
; d
i
i l
P S IS
+q
+q -q
o o
<
U
—qe < o+4q
~
\\\\\
+qo °o—q
(<] o
—-q +q




8.6 Point charge with grounded metal sphere

Look at a more complicated configuration - - - replicating the
field due to a point charge outside a grounded metal sphere,
radius a. Origin (0, 0, 0) is at sphere centre.

Place image charge q' at position Ax P
from origin S r m
Potential at P on sphere : *a —Q

where r2 = 22 + d> +2ad cosf &
r>=a%+ Ax? +2alAx cosf
» We need V = 0 for all points on the surface of the sphere
(for all 6)
q _ q
\/a2+d2+2ad cos @ \/a2+Ax2+2an cosf
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Point charge with grounded metal sphere, continued

q _ q
Va@+d?+2ad cosb \@+8x24+2aAx cos 6

v

This can be solved rigorously by inputting specific values
for cos (eg, -1, 0, 1). However note that :

v

v a2+d2+2ad cosé

93
\/‘34 +a2+2 & B 0056

By inspection, image charge q' = —q3, at position Ax = %2

Hence potential at any point (x, y, z) OUTSIDE the sphere

_ g a
LHS = x[d/

=1

v

v

V=_1 q qa/d
47r€0 \/(X—d)2+y2+z2 \/(x—— +y2+22

(and V = 0 inside)
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Capacitance
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9.1 Capacitance

Capacitors store electrostatic energy, by
keeping two opposite charge accumulations
on different metallic surfaces.

Capacitance is defined as the charge that is
stored per unit voltage applied between the
two surfaces.

Stored charge Q
Voltage applied

The charge is equal and opposite on both
surfaces.
» Simple example : Parallel plate capacitor

Capacitance definition C =

L.,
LT

\"

area A

_Q-
of TE_.q

» From before, E constant between plates (Gauss) :

_Q _Q
fsE‘@—% — E—GTA

d d
Vi =—-JfgE-dx=-99 - v, =489
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9.2 Cylindrical capacitor

» Example : coaxial cable. Battery supplies +Q on the inner
surface, —Q is induced on the outer (Gauss)

From before, Gauss : /

§sE-da=FE-27nr(=2

-Q
- Ezzfr’e/erf(radlal)fora<r<b = <>

— E=0for0O<r<aand forr>b>b v b
b b Qe
> V+—:_fa Er-dr=-J; 27T€0rdr

~Plioga (3) » V-1 =+ £l 1)

_ 27e€
C=Q/V = 2ty x

» Capacitance per unit length :

_ _ 2me
= O/ faau )
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9.3 Spherical capacitor
» Example : spherical capacitor with concentric hollow

spheres. Battery supplies +Q on the inner sphere, —Q is
induced on the outer (Gauss).

From before, Gauss :
E= ﬁi(radial) fora<r<b
\Y)

E=0forr<a and r>b

_ b . b Q . Q
g V+_—_fa Er.dr__fa Wdr_47reo [15_15]

— Vo =% [1-1]

» Capacitance : C=Q/V= 4“013%



Capacitors summary

Capacitance:  Storage of energy through separation of two

oppositely poled charge accumulations

charge Q

CapacitanceC= — =~ —
voltage V applied

(i) parallel-plate capacitor:

(ii) cylindrical capacitor:

(iii) spherical capacitor:
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9.4 Capacitance networks
1. Capacitors in parallel

» Voltage is the same across each

capacitor.
» Total charge :
Q= +Qb+QQ+--- vl 1 +q, 1 +q, 1 +q,
:C1V—|-CQV—|—C3V—|—--~ f T-% T-% TG

» Total capacitance

2. Capacitors in series

» Charge is the same on each capacitor Q-Q +Q-Q +Q-Q

plate (inner plates are |solated from | | | I

the outside world, with Qo = ’_| I-_-‘
» Total voltage :

V = V1 —+ V2 =+ V3 —I—
r=ut+i V.
&+2+Q+

SRS
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9.5 Energy stored in a capacitor

Capacitor is initially uncharged : add a small amount of
charge.

Further charge will have to be brought up against the
potential created by the existing charge :

Work done — dW = V(q) dq

Energy required to charge the capacitor to potential V; :
= & V(g

with g = CV — dq: cav

W=[cvav=1CcW

Hence, energy stored in a capacitor with charge  and
voltage V :

U=W=}CV=1QVo=3Q/C



9.6 Changing C at constant V

» Battery maintains capacitor at constant V. What

happens if C changes ?
+Q Energy stored in capacitor : Ug = % C V2

91

T -a

Change in capacitor energy :  dUg = % v2dC

» Hence if C increases, U; increases

Since Q = CV, if Cincreases (ie. dC is positive), battery has to
supply charge to maintain the same V. Hence charge on
capacitor increases, and energy stored in battery decreases.

Battery supplies dQ at constant V' — energy change of battery

is dUg = —V dQ (minus because battery loses stored energy in
providing +dQ to the plates of the capacitor)
Q=CV,dQ=VdC , hence dUg = —V2dC

This is a general result. If Ug increases at constant V, this is
matched by a factor 2 decrease in battery energy.

Cons. of energy : dU,oy = dUg + dUg = dW , where
dW = —1 V2dC s the work done to change C*).

(*) Note dC is negative if plates are pulled apart, since C decreases.



Lecture 10

Capacitance, Energy &
Magnetostatitcs
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10.1 Force between capacitor plates (2 cases)
Capacitor plates are oppositely charged — an

attractive force F exists between them. \Ill

By pulling the plates apart we perform work
on the capacitor / battery system

-Q +Q
Work done in pulling apart: W =— [F-dx | |
Energy stored in capacitor :  Ug = 3 Q?/C ||
d X
Energy stored in the battery: Ug =V Q ——

. Pull apart at constant charge: battery disconnected, dUg = 0

» Force between plates : F = —22¢ |5 const = — 3 QP2 (%)

~ For a parallel plate capacitor & = 2

> Hence =321

» Mechanical work required to move plates from separation
ditods: W——fszd —502 (d2 d1)



Force between capacitor plates continued
2. Plates pulled apart at constant voltage (which is
supplied by the battery)

—_—<

aU 012 2
» F=— mia/’V const. W(E vee-V C,)
~——" bDattery -Q +Q
capacitor | |
__1yy206C _
12 2 ° d 3
F=—1V2¢A/x

» Mechanical work required to move plates from separation
d1t0d22 W——fd2F dx

W=1V2aA(g —g)=2V2(Ci — Co)

» Pulling plates apart leaves the capacitance lowered,
charge returns to the battery, work is performed on the

capacitor/battery system.
94



10.2 Energy density of the electric field

» Consider parallel plate capacitor
Us=3CV2, E=Y, C=cA/d

=4
area A
> Hence Uc = o4 E2d? dTT_E -Q
— %60 E2 ég/ 0 _+Q

volume

» Energy density in between the plates :
U, = Ug/[unit volume] = Jeq E2

» This is actually a general result for any region in space in
an E field. The volume can be made arbitrarily small :

dU = Jeo E2dV « volume element

» Hence U= %60 I, E2dV over all space in the general
case.
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10.3 Example : hollow spherical shell
Example : Energy of hollow spherical shell carrying charge g
E=0 for0<r < a(inside) 5 —
E=_4

. . |
Trcor? for a < r (radial, as point charge) |

» U= te fy E2dV over all space

= e J& I3 I 5 Toar | 2dr sinf d6 do

volume element

604771622foo1dr U=

87‘('60 a

» Alternative approach : energy required to bring up charge
dq from infinity against potential V(q) is dW = V(q)dq

W= f dq - fO 471'60 a dq
which is the same result as above.

1
87T€0 a



10.4 Principle of superposition for energy density

Question: does the principle of superposition apply to
energy density?

» Principle of superposition: E =E; + E,
= %60 fy E12 av + %Eofy E22 dl + ¢ nyl -E, dV
= U + U2+60ny1 'Ezdl/

» Therefore the answer is no !
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MAGNETOSTATICS - OVERVIEW

1. Introduction: Origins of Magnetism

2. Forces on Current-Carrying Wires in Magnetic Fields
3. The Biot-Savart Law (B-fields of Wires, Solenoids, etc.)
4. Magnetic Dipoles

5. Ampere’s Law & Gauss’ Law of Magnetostatics

6. Current Density and the Continuity Equation

L Problem
Set3
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10.5 Origins of magnetism

Minerals found in ancient Greek city Magnesia (“Magnetite”, Fe;0,) attract
small metal objects.

Materials containing certain atoms such as Iron (Fe), Cobalt (Co), Nickel (Ni)
can exhibit “permanent” magnetic dipoles.

Forces exist between pairs of current-carrying wires (attractive for
current flowing in the same, repulsive for current flowing in opposite
directions).

An electric current through a wire creates a magnetic field whose field
lines loop around the wire.

Magnetic ficld

B Magnetic field lines form closed loops. They do not originate from
“magnetic monopoles”.

The fundamental generators of magnetic fields are dipoles that may
result from electrical current loops or inherent material properties
such as aligned angular momenta of charged particles.
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10.6 Magnetostatics terminology

» Magnetic flux density B (“B-field”) [B] =T (Tesla)

» Magnetic field (strength) H = %B (in non magnetic
materials) [H] = Am™'

where jio =4m x 1077 NA=2 (permeability of free
space)



10.7 Forces on current-carrying wires in magnetic fields
Experimental observations :
1. Two wires attract (repel) one another if they © F,, F

carry current in the same (opposite) 1 14°P
directions.

2. A current-carrying wire in a magnetic field, - !
flux density B, experiences a force with : d7 B
Qo)

FxB

F o« I (currentin wire)

F « ¢ (length of wire)

F x sina (a is angle between the ;e

direction of B and I)

F is oriented perpendicular to both B )

and the wire

dF =IBdl{sina - dF =1d/xB e
o

vV vy VvVYyy

Current

v

v
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Force on current-carrying wire in a B-field:
dF =1d({x B

Zoom into a wire segment, assume it’s the
(+) charge moving (“conventional” current)

>

>

10.8 The Lorenz force

I=% and |v|=|%| (average velocity of charge)
at at

dg de _ ., dg . - _
— I =31 % =v3l:Vectorizing Idl{=vdq
— dF =dgv xB

Lorenz force F=qgvxB

Any charge g moving with velocity v in a magnetic flux density B
experiences a Lorenz force F = gv x B perpendicular to both

Work done on the moving charge
dW=-F -dl=—-q(vxB)-vat=0

Magnetic fields do no work



10.9 Example : measuring B field
From torque on a wire loop carrying current [ in field B :

» From diagram, torque on coil about O when |6] > 0 :
T =r x F from current in sides b (sides a, forces F’ cancel)
» |T|=2x§sindIbB (Fisltolis_LtoB)
—~—

Force
» |[T|=1BAsing (Aisthe area of the loop)
» Measure T — obtain B Top F
SIDE 3D T F VIEW _ T9>/
VIEW = l
/
- Oﬁi E
T I

/él F w___Force onthe

—_ vertical current

element
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Lecture 11

Magnitostatics & the Biot-Savart
Law



11.1 The Biot-Savart Law for calculating magnetic fields

The Biot-Savart is here taken as an empirical starting point for
calculation of magnetic fields, but can be derived from Maxwell’s
equations and the magnetic potential (see later).

» The Biot-Savart Law states the field at

point P: dlMdB
dixi ©
2

@:M0[47r

» o =4m x 1077 NA—2 permeability of free space
dB is the magnetic flux density contribution at P

v

v

I is the current flowing through element d/
» r is the vector connecting d¢ and P
» dB is oriented perpendicular to r and the current

Then integrate dB to get tofal field from a circuit which has current
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11.2 Example : the B-field of a straight wire

Calculate the B-field due to a straight wire with
current I, length 2b, at a distance a from the centre p

> Atpoint P : dB = o I $5 r
» Use r?> =a° + (%> and
|d¢ x B| = dl sinf =dl2 -b

— dB=tl 3 4y
(&2+62)2
» Direction given by right hand screw
rule.

» B=tol ar
am b (a2+£2 :
I 2/ o _ olb 1
a
(@+£2)2 | _p (a2+b2)

» For an infinite straight wire (b — c0) B = Lo
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11.3 Example : force between 2 current-carrying wires

Two wires: force on small element of wire 1 from magnetic field
of small element of wire 2

I, p I,
> dFyp = Iy d¢y x dB; “/i1 4
T .dF
» At point on wire 1, magnetic field dB2® —i
element dB, from wire 2 : T I T df
I
dB, = fﬁé dlo X rp

— dFy, = ”2751,1322 [—dly x (dls x ryp)]

(negative since ry, = —ryq)

» Force between 2 current-carrying wires :

Fi, = fe1 fez il [dd, x (déy X ryp)]

3
Amry,
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- and if the wires are parallel and infinite
If wires are infinite, separated by distance a, currents 1 and I
» dFy, = I1dfy X By

_ kolp
BZ|_ 2ra I I,

» From BS Law, from before,
» Force on element d/; :

[dF 5| = I |d¢4 |22 towards wire 2

» Due to the symmetry, force on every
element is the same along the wire

» Hence force per unit length on wire 1 :

IdF | _ polil
|dé, | 2ra

(and note that dF, = —dF5)
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11.4 Example : B-field of a circular current loop

Calculate the B-field due to a circular wire with current I, radius

a, at a distance z along its axis from the centre

> Field due to d¢ : dB = yo I 9%

» [l x| =dl , sincer L d¢

» Components of dB perpendicular to
z-axis cancel due to symmetry —
field is along the z-axis

— B=[dBsind=[2dB
» B= [t agy along

4nr2 r

| : —
- z dBsind

» a and r both constant for given point. [ d¢{ =2ra

1&°
» Hence B= 1t 3
2(z2+a2)2
> Orsincesing = —2—, B=41sin%¢
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Lecture 12

The B/ot Savart Law & the
Magnetic Dipole



12.1 Example : B-field of a solenoid

Calculate the B-field due to a solenoid with current I, radius a,
length ¢ with N turns. Sum over all contributions from all loops
at a distance z (integrate from 64 to 65).

» Contribution from one element dz: —dze

«— 27—

dB = 42 sin® 0 dI where dI =1 (§)dz
along the axis of the solenoid.

B
»tand =2 — z=504 I"
— dz=—-a—5df !
sin“ 0
_ 02 o «ind p IN 1 _ poIN 02
» B=— [,2 52 sin”0 7 (asin20d9)__ 50 Jo. sinf do

> Hence B = “IN(cos 0, — cosbs)

> Foralong coil 61 =0, p=m — B=—pugl¥

(sign depends on direction of current — RH screw rule)
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v
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12.2 Biot-Savart Law in terms of current density
The Biot-Savart Law :
dB = o1 §75

Define current density J :

I=J- -da dlé\r’dB
J is the current per unit area (a vector) (55

— d/ P
L))
da, is the area perpendicular to the
flow of current —d/ —

Also since J || d¢

[df=(J-da)dl =J(da-dl) = J dV =
Hence B = [, uo ;25 dV da

Biot-Savart Law in terms of current
density J integrated over volume I/



Biot-Savart Law summary

The magnetic flux density B created by a current loop is given by:

d/ r B B— ,uo/ldlxr or B_uo J><rd3
4w r3

Biot-Savart Law

Straight wire. ﬂB
raight wire r ; . Lol ]
T ; 27a (512/b2—|—1)1/2
Circular loop. B 5
AN B:%:u_‘)]silﬁg
2W2Fa? 2a
Solenoid.

N
(cos B, —cos 6y)
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12.3 The magnetic dipole

A small current loop defines a magnetic dipole
d/

» Re-visit the field due to a circular T . B
current loop : d¢ a \ ™
2 0
B=_l& 5 - T e
2 2)2
2(2 +a )2 .
. _ 2ugl (r@®) A
In terms of loop area: B = =552
» Compare this with the on-axis field of m A

the electric dipole (i.e. for # = 0 ) which
has the same form :

Electric dipole : E, = 29993 . B = _2P 5 (p=qd)

4regrd = T Amepr3 =
» Define (I w a%) = I A as the magnetic dipole moment m
Magnetic dipole moment m =17A
= [Current] x [Area bounded by the loop]
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Lecture 13

Magnetic Dipoles & the
Divergence of B



13.1 Magnetic dipole components

Magnetic dipole moment m=17A
= [Current] x [Area bounded by the loop]

Er = 24"77:63%39\ (Br _ 2;42{;1;:3056
E,=0 B, =0
p=qd L m=1A

/
The magnetic and electric dipole components have exactly the
same form. (The exact derivation of the magnetic field

components are beyond the scope of this course.)
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13.2 Torque on a magnetic dipole in a B-field

Calculate the torque on a current loop placed in an external magnetic
field:

Net force on the whole loop :
E = floop‘[d—g X Bext = O

(since equal and opposite forces from
opposite elements d/ cancel pairwise)

From before, there is a torque on the
currentloop : | T| =2 x § x I Bey b sing
|T|=IBexAsind - T=TAxB.,
Torque on the magnetic dipole

—ext

Compare with the torque on an electric
dipOIe Ielec = B X Eext

Fit 4
,é - 1 F
-8 Area A ®—
E — 3 Bex(
(O}
A4 m
TRl ==  —
N
F o/
B
a; <) ext
‘,E m N
_?—>

(*) This has been done for a rectangular shape. But note that this is a general result for

any shape. Any current loop can be built from infinitesimal rectangular loops with all

En\? internal currents cancelling, yet contributing to the overall moment.



Torque on a magnetic dipole, continued

v

Do the explicit calculation for a circular
current loop:

Only the vertical component of d¢
results in a torque — df sina

v

v

Torque due to facing elements d¢ :

|dT| = 2|x x dF| = 2x(I d¢/Bsin«)sin @
x=asina; {=aa — dl=adua
|dT| = 2(I & sin? o) Bsin g do

Hence
IT| =1a*Bsiné [; (1 —cos2a) do

=ra2IBsind=IABsind =mBsind

Result : torque on the magnetic dipole
I = m X Bext

v

v

v
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d/sina

(vertical
component)

dF [g

—%—
—_—

—
I P

Bext



13.3 Energy of a magnetic dipole in a B-field

The energy of a magnetic dipole placed in an magnetic field
B, is equal to the work done in rotating dipole into its position:

v

Work to rotate dipole through angle dé FA@/
aw =T do >

¢

v

Zero energy usually chosen at 0 = /2 B
W= [?, mBoqsing' do’ e .
Energy of the magnetic dipole KJ' F

v

v

W= -mBgicosfd = -—m-B
[ minimum at § =0, maximumatd =« ]

ext

Compare with the energy of an electric dipole
Welec = —P- E ¢
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Magnetic dipole summary

Magnetic dipole moment m of a m A

current loop = current x area of a :n‘ A=ra?
the loop: m=I7A

Magnetic flux density B _ 2mcos 6 B — u sin O
of a magnetic dipole: r=Ho A3 o = Ho A3

By =0

F Torque on a magnetic dipole in an
external magnetic field B,,:
T=IAXB.,; =mx B,

_—
>B
5T ext
m g E Energy of a magnetic dipole in an
—_—

external magnetic flux density B,:
i F W =—mB,;cos0 = —m-B,
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v
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13.4 Divergence of B
Place a current element I d/ at the
origin pointing along the z-axis

The Biot-Savart Law gives the field at

point P — dB = o I 9%

dB is perpendicular to r and z

Rotate r around ¢, and it can be seen Closed surface
the lines of B are circles in planes

perpendicular to d¢ and centred on it /

— the net outward flux of B due to d¢ B
through the surface of the volume

element dV is zero

» Any volume can be made up of volume elements as dV/

Volume dV

» Hence fsﬁ -da=0 — no magnetic monopoles.

» Divergence Theorem : §.B-da= [,(V-B)dlV —
V-B=0




13.5 Divergence of B from the Biot-Savart Law
Calculate B-field at point P due to a current density J.
R=r—r'=Kx-x,y-y,z-27)
» B= fl/ o )XR dr’

where dV’ = dx’dy dz'. (Note carefully
the primed and unprimed coordinates)

R
> y.gzgfy.<;(;’)xﬁ) dav’

w.rt. r )
» Using the product rule :

s V(30 < ) = - (V) -3 - (Y x )

- 0 (because J(r’) does not depend on r)

R R 1
X g =Vx g =1 (VxR)+ V. (Rs <R

\<I

=0
Vector along R

[

-0
»Hence V-B=0 and ¢;B-da=0
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Lecture 14

Ampere’s Circuital Law & Charge
Conservation



14.1 Ampere’s Circuital Law
» Ampere’s Circuital Law can be derived formally from the
Biot-Savart Law and vector calculus but is beyond the
scope of this course.
» But for a special case, we return to the B-field due to an
infinite straight wire with current I, previously derived.

B =L |B|const. at radius a PaB
r
» We can form the closed-loop integral : 0 a
fﬁ.ﬂ:%XZﬂ'a:uol _é d/ 0
«—/—

» This gives us Ampere’s Circuital Law
which is also applicable for the general
case:

¢$B-dl = pol = o [¢J -da for current density J

Note Ampere’s Law needs to be amended in the presence of
any time-varying electric field (see later).
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Ampere’s Circuital Law continued

Ampere’s Circuital Law in integral form
¢$B-dl = pol = o [gJ -da for current density J

Stokes Theorem : §.B-d/= [¢(V x B)-da

— Js(¥ xB)-da=po §gJ-da

Ampere’s Law in differential form :
VxB=pud
Ampere’s Law : an integral of magnetic flux density B over

a closed loop bounding a surface equals the current
flowing through the surface.

Allows straightforward calculations of B-fields along loops
where B is constant.



14.2 Example : B-field inside and outside a cylindrical wire

1. Outside the wire (this should be obvious - - -)

v

Ampere’s Law § B -dl = pol

v

Amperean path — circle of radius r :
On this path B || d¢ and |Bj| is constant

» §B-dl=B-27r=pol

— B = ‘2% for an infinite wire

(much easier than using Biot - Savart !)
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Cylindrical wire continued

2. Inside the wire

Area A \'
» Current evenly distributed throughout @
cylinder — J=1I/A=-1%;
» Ampere’s Law for field at radius r
$B-dl = pol =po [gJ-da
B-27r=pg for #ZWr’dr’
7 r? B
= ol | ——
120] (7’(’32)
——

ratio of areas

[ S

— B= <2“7TL;2> r inside wire 0
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14.3 Example : B-field of a long solenoid
Solenoid carrying current I

Amperean path is a rectangle inside and
outside the solenoid

[o <]
Take side 3 to oo (i.e. does not contribute); j l
sides 1 & 2 cancel (due to symmetry) i
1vy 2
Contribution from side 4 only
§B-dl=B-0t=pNI 4, B
where N is the number of turns within the /

Amperean surface
— N
— B= Mo 7 1
same as from Biot-Savart law as before (*)
» B is uniform inside and zero outside the solenoid (if “infinite”)
(*) Note that if the coil is not “infinite”, end effects will need to be taken into

account and here the field will not be uniform, i.e. Ampere’s Law will not be as
useful as presented here.
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14.4 Example : B-field of a toroidal coil

Toroid has N windings of wire carrying
current

Amperean path inside the solenoid cuts

current-carrying loops N times ‘

$§B-dl=B-2rr=pyNI

io T
- B — toNI :
2nr

B- field is uniform in toroid and follows
circular path

B-field is zero outside the confines of
the toroid



Ampere’s Law summary

Ampere’s law: “Gauss’ law of Magnetism”:
f B.dl = p,l
f B.da=0
Electric currents generate magnetic fields S
whose field lines form closed loops. There are no magnetic monopoles.
Infinite straight wire. teid uol
outside: — — —> B ="
o §B.dl B.2mr = p,l T
inside: _ g T _ Mol
0<r<a fB-‘”-B-Z“T— bl =12 ™>b8= 02
Toroidal coil. Ao
@ fB.dl:B.znr=uoN1 —>B:“§_N’
nr

Infinite solenoid.

N
sz.dl:B.l= H0N1—>B:u017
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14.5 Conservation of charge

» Consider a volume I bounded by a
surface S.

» The integral of current density flowing da
out (or into) the surface J - da is equal
to the charge lost by the volume [per
unit time].

»Jsd da=1=-F =G J, o)V

Statement of the conservation of charge

Volume V

» Use the divergence theorem on the
LHS

JyN-3dv =~ [, o(V)dV
This gives the continuity equation — V. -J = —Z(p)
(mathematical statement of charge conservation)
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14.6 Current density and Ohm’s Law

» Ohm'sLaw V=1IR

V=E/
I=JA
— E{=JAR

» This gives Ohm’s Law in terms of
current density: —  J= 22 E

» Conductivity o= #4
Resistivity p=1/0
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Summary : charge conservation & the continuity equation

Defi t density J:
efine current density s dI

For a closed volume, the net current entering must be equal to the rate in change

of charge inside the volume (charge conservation):

N — Continuity Equation:
- ot

Q —u 20 op

— ~ Jda=/=—""= «— V.J=_20C

8 \\ 7{‘ ot J ot

In the limit of electro/magneto-statics:
8p stationary CE
- =0 charges —> V.J=0

aJ . steady
ot currents ot
L Y J \ Y J
constant B-fields constant E-fields
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Lecture 15

Electromagnetic Induction



15.1.1 Summarizing where we are : electrostatics
1. Coulomb’s Law :

E(r) = 15 , 23— R)dV

» An electric charge generates an electric R
field. Electric field lines begin and end on
charge or at co.

2. Gauss Law :
j{E‘da:Qenc/./EO — V-E=p/e
S h/_/

differential form

integral form
3. The electric field is conservative :

» A well-defined potential V such that E= -V V
— ¢E-dl =0 (work done is independent of path)

» Using the vector identity: VxE=-VYxVV=0
» Hence VXE=0
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15.1.2 Summarizing where we are : magnetostatics
1. Biot-Savart Law :

B(r) =42 [, &Ry x @t —R)dV

» There are no magnetic monopoles.
Magnetic field lines form closed loops. o

2. Gauss Law of magnetostatics :

§Bda-0 -+ ¥ B0
S N—
— differential form
integral form
3. Ampere’s Law :
» Magnetic fields are generated by electric currents.
- fﬁ'ﬂzﬂolencl. —- VxB=ppd
4. Continuity equation :
» fsd da=-G [,p(V)dV - V-J=-Z(p)

dt
(charge conserved)
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Vector and scalar potential

Off syllabus, but worth a mention

Magnetic vector potential A defined through: B=VxA

Such A always exists because: V-B=V. (V X A) =0

Inserting into Ampere’s law: VxB=Vx(VxA)
=V(V-A)—V?A =)

There is a certain degree of freedom in which A to choose — set: V-A=0

Poisson equations for magnetostatics: 2

(one for each J & A coordinate) VA = — Mo J

- - B
Magnetic scalar potential V. B=—uVV, <«— V, = 1 / B-dl
Ho m m A

Caution: V,, is pathway-dependent and not single-valued because V x B £ 0 .
But V,, can be used with care in simply-connected, current-free regions.

Being a scalar, V,,, is mathematically easier to use than the vector potential.
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15.2 Electromagnetic induction - outline

Up to now we have considered stationary charges and steady
currents. We now focus on what happens when either the
E-field or B-field varies with time.

1. Introduction: Electromagnetic Induction
2. Faraday’s and Lenz’s Laws of Induction
3. Self-Inductance and Mutual Inductance
4. The Transformer

5. Energy of the Magnetic Field

6. Charged Particles in E- and B-Fields

Problem
Set4

— Problem

Set5
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Origins of electromagnetic induction

1831: Michael Faraday carries out a series of experiments and observes:

Two coils are arranged in a way so that the
magnetic flux density of coil A penetrates
through coil B. He found that if the B-field in
coil A is changing, this induces an electrical
current in coil B.

Moving a bar magnet through a circuit
element (wire loop) generates a current
in the circuit. Moving instead the circuit

<>
w.r.t. the bar magnet, gives the same ’®”|
result.

A change with time in the magnetic flux density through a circuit causes an
“electromotive force” that moves charges along the circuit.
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15.3 Faraday and Lenz’s Laws of Induction
15.3.1 Electromotive force (EMF)

» Consider a wire moving with velocity v

through a B-field. d/ ‘[ Y,
» Free charges in the wire experiencea &

Lorenz force, perpendicular to v & B: (3:) B
F=qvxB
» This moves charge to one side/end of the wire, which will
create an electric potential drop along the wire :
£= [ = [ B 4t by definition, V = work/unit charge )

» Hence &= [,(v xB)- -d¢l

€ is the electromotive force (or electromotance) (EMF)

» Note that £ is not a force but a line integral over a force

(i.e. a potential) !
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15.3.2 Magnetic flux

» Now consider a wire circuit
loop being pulled with
velocity v out of a region
containing a B-field.

» EMF on vertical side :
E=[,(vxB)-dl
=vBL
» No contribution to EMF from horizontal sides
» Define magnetic flux & = [¢ B-da

> Rate of change of flux 22 =& [ B-da= g [s Bda
(since B is || to da)

» @ = &(BA)= 4(BLx)=B% L = —vBL = -€
(negative since x decreases with positive v)

» In general, £ from magnetic flux ‘Z,—‘f = dtf B-da= —-¢
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15.4 Faraday’s and Lenz’s Laws

» Faraday’s Law

The induced electromotance (EMF) £ in any closed
circuit is equal to (the negative of) the time rate of
change of the magnetic flux ¢ through the circuit.

d d
FT:EfsB'd—a: —¢

» Lenz’s Law

The induced electromotance always gives rise to a
current whose magnetic field opposes the original
change in magnetic flux.
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15.5 Faraday’s Law in differential form

» Net potential around a closed circuit loop = 0
E=¢E-dl, henceV=-E=—-§E- -d/
» Faraday’s Law in integral form
E=§E - dl=-5 [;B-da
Apply Stokes’ theorem to LHS :
Js (VxE)-da=-§ [¢B-da
» Gives Faraday’s Law in differential form

0B
VXE=—-%
» Any time-varying magnetic field (or change in magnetic
flux) generates an electric field which results in an electric
potential £.

(Incontrast V x E =0 for electro/magnito-statics)



Lecture 16

Induction Examples & Self
Induction



Faraday’s and Lenz’s Laws summary

Faraday’s Law of electromagnetic induction:

\'
The induced electromotance € in any £
closed circuit is equal to the negative of
the time rate of change of the magnetic
flux @ through the circuit.
ad d
e=—=——¢_B.da
dt dt ¢S
In terms of E- and B-fields:
Integral f d Differential JB
E.d?=——9¢B.da VXE=——
fi : fi :
orm dt s orm ot
Lenz’s Law:

An induced electromotance always gives rise to a current whose magnetic field
opposes the original change in magnetic flux.

Unit of magnetic flux Weber [Wb] = [Tm?] = [kg m?s2A~"]
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16.1 Example : the Homopolar Generator (Faraday’s disk)

1. Determine voltage using Lorenz force 8O

Bis out of page

» Metal disk mechanically rotated
(performing work)

» A B-field is present with B
perpendicular to the disk area.

» Voltage pick-up between the centre and -

rim of disk.
B direction is
» EMF is radial, with identical potential \?\ftofpage
along each circumference element, \? ®
radius r \
€= [ 5 (vxB)-dr ®

where v . Bldr and v=rw

» €= [JwBrdr=1waB
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The Homopolar Generator continued
2. Determine using Faraday’s Law

d B
E=-5JsB-da s

Bisoutof page &

» Consider area element AA=r A0 Ar
9 = limatso a7 (F AO Ar) = wr Ar
» Add up all contributions Ar — ar

(There is a +/- sign ambiguity
depending on direction of da. Take

B direction is

direction such that £ is positive.) out of page

NPt

> 5:foawBrdr:%wazB —

same result as before *. \

* Strictly speaking, this method from Faraday’s Law is not ®
: o B ® ‘Q‘
entirely sensible since the current is continuous across the v
F

disk and 5 B -dais in principle only applicable for a surface

bouaging a closed current path (see for example Giriffiths).



16.2 Example : coil rotating in a B-field

Coil, N turns, rotating at angular frequency
w in a uniform B-field

» Magnetic flux
¢=[B-da=NABsin¢
where 6 = wt
[x N since each turn of the coil links

flux A A A A
] Bl A
E=-22=_NABwcoswt _ ZE @/
» This is a generator/dynamo / i~
(incorporated into most aspects of

electrical power generation).
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16.3 Self inductance

» Take a closed-loop circuit through which
current flows

» The current I has an associated magnetic
field which penetrates the circuit, B o< I

» If the current changes, there will be a
changing B-field through the loop.

» Faraday : The changing magnetic qux ¢ induces an EMF
(voltage) in the loop itself : £ = —W ,where &= [B-da

» Lenz : This EMF will act in a direction so as to oppose the
change in flux which caused it

» EMF induced £ = —%¢ ® . Note that ® o« B o< I
» Define self inductance L=2

Since ¢ o I, can also be written L = 92 = 22 /dl — _g/dl
» L depends solely on the geometry of the CIrCUIt.
(Compare with circuit theory : V = L 4l)
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16.4 Example : self induction of a long coil

Calculate the self inductance of a long coll, area A, length
¢, with N turns

» From Ampere’s law

B =l I N turns
» Magnetic flux ® = [ B -da A
®=NAB =M Al < / >
(since each of the N coils
links its own flux)
» Hence L=2=puNA

» EMF induced in coil :
2
5_——:—MON Adl——l_%
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16.5 Example : long coil in varying B with resistive load

» Consider a long coil, area A, length B(t)
¢, with N turns. -
00000

» Coil is immersed in axial
time-varying magnetic field :
B(t) = Bycoswt

» EMF is induced in coil, coil is
connected across a resistor
— current will flow

» EMF induced :
E=-2 =2 (NAB,coswt)

= NAw B, sinwt
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Long coil in varying B with resistive load, continued

» Self inductance of coil : L= MONTZ A

» Back EMF induced due to L opposes Blt)
the changing current (Lenz) 50000
» Ohm’s Law for current flowing in the coll
dl
=1IR —
N + L
induced emf ~~
back emf
Alternatively can write &€ =12
where Z = R+ jwl — Z =|Z|el? _ O0000
> & =1Im[& e/t where & = (NAwBy)
» Current I = Iy Im [e/“!=9)] @

where Iy = &/|Z| = & /+/ R? + (wL)?

and phase angle : tan¢ = (wL)/R
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16.5 Example : self induction of a coaxial cable

Calculate the self inductance of a coaxial cable,
inner/outer radii a & b, length ¢

_>I
» From Ampere’s law, for b
()i
— Mol
B = 2$rr a
/ £

» Note that the area
linking flux is radial :
da=/ar

» Magnetic flux :
& = [P salygr

2mwr

Surface
X linking flux
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Lecture 17

Self & Mutual Inductance



Self inductance summary

Self-inductance L is the ratio of the voltage L)
(emf) produced in a circuit by self-induction, I — dar d® o —&
to the rate of change in current causing the Todl T d7 - I
induction. dt
Self-inductance of a long coil.
N turns
do N?
A L=—=pu—A

Self-inductance of a coaxial cable.

b
G - m()
7 2 a

Self-inductance of two parallel wires.

20§, — _
d] L=@1n<d “)1
= = T a

Units of self inductance : the Henry [H] = [kg m*s—2A~2].
When the current changes at one ampere per second (As~'), an
inductance of 1 H results in the generation of one volt (1 V) of
%gtential difference.



17.1 Example : self inductance of two parallel wires

Calculate the self inductance of two parallel wires,radius
a, separation to the centres d, and of length ¢

» From Ampere’s law, o m A
outside each wire : o VA
_ pol d —
B_ZLM aMMMMMSMMEMSOSTSTESDTEEEEEESERY e
Radial area element ¢ dr a 5 A
» Magnetic flux : /

®=2x [T?Bidr
(factor 2 because same contribution from 2 wires):
—2x [Amltlgr — g, (422 |

a 27w r
- L=%=10loge (%)
~ M

2 ¢loge (2) fora<<d
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17.2 Mutual inductance

» Current I; through circuit loop 1
generates magnetic field density B,
which penetrates circuit loop 2

» A change in current I; will induce an
EMF in circuit loop 2

» Define mutual inductance M
() (0}
Moy = 72 5 Mz =31 0 Mz = My
do,

» Since ¢ « I, can also be written Mo,
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Loop 2

Loop 1

_ . _ do4
—THVM12—

a5,



17.3 Mutual induction of two coaxial solenoids
1. Current through coil 1 creates magnetic field through coil 2.

By = o g1 L I
A : area of pick-up coil 2

v

Flux experienced by coil 2
Gy = Np Ap By = pio 5 Ty No Ap

v

Nzturns ......QCOAZ

» Mutual inductance : —l,—>
_ % N1 N2
Moy = 72 = po Az

EMF induced in coil 2 :

do dr
> 5:—#:—M041A2N2 G

E=—-M7 ‘”‘ (compareto & = —L% for self inductance)

v
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Mutual induction of two coaxial solenoids continued
2. Current through coil 2 creates magnetic field through coil 1.

» &1 = [ By da, (da, is "effective” area)

Now it's more complicated Nyturns 75°°°°° (A,

as By is not uniform through coil 1! chnnne

» Flux experienced by coil 1 &4 = Nj A, B,
Overlap with volume over which B is “strongest”
» Approximate : neglect stray fields of B, outside coil 2
then Aj = A; and N; = Ny % and By = g 2 I

» Mutual inductance :

[ Ny (£2/£1) Ao o (N2 /£2) I Ni N;
M12:T21: i (£2/41) 2[20(2/2)2:MO 1412A2=M21

> Mo = Moy This is Neumann’s theorem. ( It turns out even
if we had done the exact calculation the result would have been
the same)
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Mutual inductance summary

Mutual Inductance M: is the ratio of the Loop 2
voltage (emf) produced in a circuit by self-

induction, to the rate of change in current

causing the induction.

B

d Neumann d !
M, = LY > My = o,
dl, formula dl,
My = My
Loop 1
Mutual inductance of two coaxial solenoids.
N1 N
Natums 1112204, My = po—— A2
1
«—,—

Units of mutual inductance :
again the Henry [H] = [kg m?s—2A~?] .
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Lecture 18

Transformer & Magnetic Energy



18.1 Coaxial solenoids sharing the same area
From before : mutual inductance between coils :
M = Miz = o MM A, (= M)
» Self inductance of c0|Is 1&2

L o’ A, and Npturns 222000 ),
Lz—uofAz —Lh—
> I Ay = A

M = (\/%) (L1 L)
If by = 4o then M= \/(L1 L2)

» Hence the mutual inductance is
proportional to the geometrical mean
of the self inductances.

In general circuits may not be tightly coupled, hence
M = k\/(Ly Ly) where k < 1. k is the coefficient of coupling.
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18.2 Inductors in series and parallel
» 1. In series with no mutual inductance |
between coils :

V=L 9+ L% = (L + L)%
L=Ly+ Ly

» 2. In series with mutual inductance
between coils :

V= (L + M)+ (L, + M) 9
=L+ L +2M) 4
L=1Ly+Ly+2M
» 3. In parallel, no mutual inductance :
V=L % =1,% where I =11 + I,
Write V=L% — V=L (% +%) =L (£+1)

_ 1,1 i i _ LM
=L 5 (with mutual inductance L = £ =)

~—
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18.3 The transformer

» Primary coil creates flux &, = Ap Bp primary secondary
per winding — secondary coil gives coil coil
EMF per winding &g = —%%s

» The coils are coupled : dg = kop v, H Vv,
where k = 1 for an ideal transformer
(k depends on geometry, coupling etc.)

» Ratio of EMFs :
€p=-Np%Gf , vs_9%  Ns

£s = —Ng%s Ve dop Np
k winding ratio

» Transformer will step up or step down applied voltage Vp
by the winding ratio
» Ideally there is no power dissipated in the transformer if

coils have zero resistance

_ Is _ Vp _ 1 Np
— sts—VpIp — T — Vs — k Ns
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Transformer summary

primary secondary Primary coil creates flux which permeates
coil coil secondary coil, coupling their voltages:

Voltage Vs dPg Ng
Ratio: o Ad. N
v, v, Vp ddp Np
Current I_S o ddp &
Ratio: Ip - ddg Ny




18.4 Energy of the magnetic field

Consider the energy stored in an inductor L :

» Change in current results in a back EMF &
We need to do work to change the current : dW = VdQ
Power = work per unit time = V99 = v

v

Energy expended U= | VI dt = Lﬂ Idt
~—~ dt

power S~~~
Back EMF

v

U=3iLr=%o1r (L=9%)

regardless of circuit / current geometry

v

Foracoil: L= pg NTZA and B = Mo%f (Ampere Law)

2 N2
0 42

1 N2 B2 _ 1B _ 1B
— U_2<M0€A)< >_2qug_2ro < volume

v

In the generalcase: U = 21% [ B2dV  over all space
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Summary of energy in E and B fields

Electric field energy

» In terms of circuits :

Ue — % C V2
:%QV
» In terms of fields :
Ue = %0 all space E? dv

Magnetic field energy

» In terms of circuits :

Um_ 1 LIZ

2

_ 1
=501

» In terms of fields :

U, =4 B2 dI

= 2 o Jall space



Lecture 19

Motion in E & B Fields &
Displacement Current



169

19.1 Motion of charged particles in E and B fields

» Force on a charged particle in an E and B field :

F=q(E +vxB)
N~ N—\—
alongE 1 tobothvand B

» Newton second law provides equation of motion :
F=ma=mi=q(E + v xB)

» Will demonstrate with 2 examples :

1. Mass spectrometer

2. Magnetic lens



19.2 Example : the mass spectrometer

Used for detecting small charged particles (molecules, ions) by
their mass m..

R .
_ﬁ__l_.._..ﬁ_
‘ ¥
a]g’d
E

detector
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Stage A : The velocity filter

» The particle will pass through
both slits if it experiences no net
force inside the filter

» The region has both E and B
fields

F=qg(E +vxB)=0

— needE=-vxB— v:%
(E Lv&B)
» Will filter particles with v = %

and the spread +Av is given by
the slit width

171

a]r;?)d

E 2R

“Fe=q€
—
F,=qvxB




Stage B : The mass filter
» This region has only a B field

mi = qi x B -

0 X =
with B=1| 0 and r=|[ y
B z
X yB
z 0

— z=0 — v; =constant (= 0) }
. f2:5'(2+j'/2:%22()'(2+y2)82
N—_——

V2

» Circular motion in x — y plane with : 7 = Zv B

. . . V2 _ mv
For circular motion r = T R= B

» Since g and v are constant, then R xc m
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Mass spectrometer summary

In the presence of both E- and B-fields, a charge
experiences the force:

Mass Spectrometer.

A. velocity filter:

E&B-fields present. Charged particles
pass through Stage A if their velocity
equals the amplitude ratio: |E|

Yy =
. B
B. Filter stage:
Only B-field present. Charged particles
are forced on circular path with radius:
my
R=—
gB

FeMm :q(E—I—VXB)
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19.3 Example : magnetic lenses

» Magnetic lenses are used for focusing and collimating
charged particle beams. Used in electron microscopes,
particle accelerators etc.

» Quadrupole lens : four identical coils aligned in z-direction.

» Sum of 4 dipole fields : for small values of x, y close to the
axis of symmetry, By oc y, By o< x




Quadrupole lens

» Along x-axis : only B, component
» Along y-axis : only By component
» No z-component (symmetry)

» Inside the lens, close to the z-axis

ky
B= k x where k is a constant
0

» Equation of motion F = gv x B

X i j ok —xZ
m| y |=q| x y Zz|=qk .yZ .
z ky kx O XX—Yyy

» Assume particle travels at a small angle wrt the z-axis :
— X, y~0 - z=0 - z=v=constant - z=vt
» Equations of motion in the x — y plane :

X=-3dkvx and y=Z2kvy
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Quadrupole lens continued

gkv
m

Equ. of motion : X = —a®x & y = oy, where a =
Solutions : x(t) = Asinat+ Bcosat

y(t) = Csinhat+ Dcosha't
where coshy,sinhy = (e’ +e77)/2

Boundary conditions :
Att=0 - z=0,x=xpandx =0,y =ypand y =0

Solutions : x(t) = Xg cos at = xpcos ¢, z : focusing
y(t) = yocoshat = yocosh ¢ z : de-focusing
(where t=2z/v) — x=0 forJz=75+nm

Focal points in z direction (x=0) at f, = 5 /5% + N7,/ 7k

Use lens pair with 90° angle for collimating a charged
beam



Quadrupole lens continued

The lens pulls the beam on-axis in x and removes particles
deviating in y

yl
Yo

De-focussing

\Z

3
X
Xo
Focussing
Yo
De-focussing

T my myv
fo=3\/qk T N7\/qK
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Magnetic lens summary

Magnetic Lens.

B = (k y, kx,0)

Equation of Motion:  mF = ql" x B

Solutions:

)’(Z) = ypcosh \/E—k—z de-focusing
vm
focusing with
k
X(Z):xocosﬂq—z i
' fo=3 [y
YA ak

Yo

Yo

I\
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19.4 Electrodynamics “before Maxwell”

1. Gauss Law :

$s E-da= Qenc./co — Y -E=p/eo
2. No magnetic monopoles :

$sB-da=0 — V-B=0
3. Faraday’s Law :

OB
4. Ampere’s Law :

fﬁ‘ﬂ:,ﬂo]encl. — VxB=pud

Time-varying B-fields generate E-fields. However, time-varying
E-fields do not seem to create B-fields in this version.
Is there something wrong ?
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19.5 Revisit Ampere’s Law

Ampere'sLaw: — V xB=ypupJ

Apply Div: — V- (VxB) = poV-J
————
always zero not always zero !!

Recall the continuity equation :
Jsd-da=— G Jyp)dv = V-J=—5(p)

[ Current leaving volume ] = [ Rate of change of charge]
through surface inside volume

Therefore Ampere’s Law in its current form violates the
continuity equation (and hence charge conservation) !

But this is not surprising since we derived Ampere’s Law
assuming that 2(p) =0

—  We have to “fix” Ampere’s Law !



19.6 Fixing Ampere’s Law : displacement current

» Add a term to Ampere’s Law to make it compatible with the
continuity equation :
> V-J= m(/’)
Apply Gauss Law V - E = p/ep
- V-J=—f(coY -E)=-V-(co %)
- y'(J—FGoﬁ) =0

» Implies we need to add (eo at) to J in Ampere’s law.
VxB=po (I+e%)

<60 a,) is called the displacement current J, (but is
actually a time-varying electric field)

» Time-varying E fields now generate B fields and vice
versa. Also satisfies charge conservation.



Lecture 20

Maxwell's Equations &
Electromagnetic Waves



Summary : Ampere’s Law

Ampere’s law does not comply with the Equation of Continuity:

VxB=pupJ apeelydv: V.(VxB)=puyV-J
— T .9
aI;ays N Jt

= (O only for statics!

This lack of charge conservation is unphysical! As a solution, add a so-called
“displacement current” to J, which will ensure compliance with the equation of
continuity: )
p d JE
VI=———=—=(gV-E)=—-V.-(gg—
ot ot (80 ) ( 0 Ot )
displacement
currentJp

Obtain Ampere’s law

JE
with “displacement current”: VxB = uo(J+ & E)

Using Stokes theorem: §.B-dl{= [((V xB)-da
Gives integral form: §.B-dl = Mo/J' da+pgeo [g %—% -da
S
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20.1 Example : Ampere’s Law and a charging capacitor

» This is the first example showing why Ampere’s Law fails
without adding the displacement current : a straight wire,
and add a capacitor into the circuit

» Before we used Ampere’s Law to calculate magnetic field
along Amperian loop fCE -dl = po Ieng.

» But there is not one unique path : .

-Q B
(i) Path 1: the smallest area [\ bt 1
(plane surface) — Igpg =1 >I
(i) Path 2: via a “bulged” surface E U
that passes between the o Path 2 v
capacitor plates — Igpe. =0 oo

» The B field has to be the same no matter which path we
choose

» The issue is that the E field is changing in the capacitor !
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A charging capacitor and Ampere’s Law, continued
» Gauss Law for a parallel plate

capacitor : E = -&

0A
OF _ 1
> BT oA I

a

‘

0Q _
ot~ €

SIS

+Q £4Q B

—| [\ Path 1

AU

JE
» Add Ip = ¢o [ % - da to o ey

Q
=

Ampere’s Law

1

OE
> ch‘d€:Mofenc/.+M060/S 5 da

Term 1

Term 2

» For the surface around the wire :
Term1=pgl , Term2=0

» For the surface around the capacitor
Term1=0, Term 2 = upep ¥ EOLAIXA:MOI
— RHS = o I, regardless of choice of path v'v

In differential form :
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VxB =g (l-i-ﬁoa@—%)



20.2 Example : B-field of a short current-carrying wire

» Recall B-field from Biot-Savart Law — B = % \/b2b+72
a

» Again, Ampere’s law fails depending on what path we use.
Need to use displacement current.

> fﬁcB dl = po Ienci. + poco fs %7% - da
» Wire is short, so charge builds up at the ends giving
time-varying E-field

E a

o g
b < b
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B-field of a short current-carrying wire, continued
> Integrate 7 over area, radius a B

» Calculate E—fleld due to two point
charges at wire ends, +b

2Q/(4mep) b
(rP+b%) 2+ p?
—_——— ———

r'2 cosd

E(r)=—

(2 field components E, and E_, and
note Ip and I have opposite signs)

. a E)E o b/(27reo
» Ip=¢p Vornrdr= €0 8t fo (21t0)) 2w rar

r=a

_ 9Q b _ b _
> Ip =25 L/W} B I{ e 1}
» So: B= il as from Biot-Savart Law v v/
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Summary of Maxwell’s Equations

jg E.da = e —vE=L
s & €

Gauss’ law: Charge generates an electric
field. Electric field lines begin and end on
charge.

d
ng.dl=—— B.da
dt Jg

B
> VXE:—a—

ot

Faraday’s law: time-varying magnetic fields
create electric fields (induction).

fB.da:O «> V.-B=0
s

There are no magnetic monopoles.
Magnetic field lines form closed loops.

d
fB.dl=u01+uosoafE.da
s

JE
> VxB=poJ+Hogo -

Ampere’s law including displacement
current: electric currents and time-varying
electric fields generate magnetic fields.
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20.3 Electromagnetic waves in vacuum

» In the absence of electric charge or current
— p=0andJ=0:
» Maxwell’s Equations become :
-E=0 vV-B=0
XEZ-%? ZXB:MOGO%
(note the symmetry between the E and B fields)
» Apply curl to Faraday’s law :
VUxVxE=-3VxB=—pge 2% E

» Use the vector identity : V x V x E =V (V- E) —V2

» This gives us a wave equationin E :

V2E —euoE=0
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A\
v

v

v

Electromagnetic waves in vacuum, continued
E=0 V-B=0

xE=-%¢ V x B = ugeo 37

Apply curl to Ampere’s law :
VXVXB—eouoathE——uoeo B

92
or
Use the vector identity : V x V x B =V (V-B)-V2B
N——

o

This gives us a wave equationin B :
V2B —euB=0

together with: ~ V2E — ¢g g E = 0

These equations have general solutions (in 1D) of the form:

E(x,t)=F(x—ct)+ G(x+ ct) and
B(x,t)=F'(x—ct)+ G (x+ ct)
where F, G, F', G’ are any functions of (x — ct), (x + ct)



20.4 Electromagnetic waves : 3D plane wave solutions
» Consider the simplest form of solution :
3D plane waves of the form
E=E; exp(i(wt—k-r)) and Plane waves
B =By exp (i(wt — k1))
Real part : Re[E] = E; cos (wt —k - r)
N —’
phase

» kis in the direction normal to the -front
wave-fronts

» All points P form a wave-front with the
same phase

Direction
of travel

» Maxima are separated by the
wavelength A where \ = 27 /k o

» Phase velocity (or propagation velocity)
of wave-fronts given by ¢ = w/k
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Lecture 21

Electromagnetic Waves & Energy
Flow



21.1 Divergence, time derivative, and curl of E and B

193

» The time derivative of

» The divergenceof E: V-E=V . E,exp[i(wt—k-r)]

_ [aaw 2, 82} By exp (i(wt — kex — kyy — kz2))
= [(—/) kxEx + (—i) kyEy + (i) szz] exp (i(wt —k - 1))
=(—Hk-E : hence V=-ik

E:
—iwE : hence gziw

» The curl of E :

i ik 0E, 9
vep_|lo 3 o |_| & _5% |_
-~ = ox Oy 0z g[zz (5)9,:2(
E. E E o — ok
k/E, — kE,
(—1) kE kyE. xE &again V=-ik
keE, — kyEx



21.2 Electromagnetic waves : speed of propagation

>

194

To get speed of propagation, substitute
E = E; exp (/(wt — k - r)) into the wave equation
V2E = co o {pE

UseV=—-ik - V2= (-ik)?®=—kK?
%:iw — %E(iw)zz—wz
—k2E, exp (i(wt —k-r)) = —w?eo o Eg exp (i(wt —k - 1))

— k2 = 2 €0 Mo
Fields of this form are solutions to the wave equation with
velocity of propagation :

C:%:ﬁ,:sxmff ms~!

i.e. the speed of light — speed of an EM wave in vacuum



195

21.3 Relationship between E and B
Substitute E = E; exp (i(wt — k - r)) into Maxwell egn’s :

V-E=—-ik-E=0
V-B=—-ik-B=0
Hence k-E=0 and k-B=0

Electric and magnetic fields in vacuum are perpendicular
to direction of propogation — EM waves are transverse

Substitute into Faraday’s Law: V x E = —92
~ikxE=-iwB - B=1lkxE
Substitute into Ampere’s Law : V x B = yig ¢g %
—ikxB=iwpgegE — E:—%zkxﬂ

E, B & k are mutually orthogonal (NB. k x B = kBsin 3 E)
E and B are in phase and lie in the plane of the wavefront

; ; i 02
Field magnitude ratio : |E|/|B| = =c= W



21.4 Electromagnetic wave travelling along the z direction

E=E;sin(w(t—2z/c)) x
B = By sin(w(t—-2z/c)) ¥
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21.5 Characteristic impedance of free space

- Take the ratio Z = § where |H| =L |B]
fe3 Ho
» Z has units [Vm~']/[Am~1] = Ohms.

» Z is called the characteristic impedance of
free space

[l

Z = =,/ =376.7Q

]



Electromagnetic waves : summary

In vacuum, free of charge or currents (p, J = 0):

V.E=0 Vx E_—%—]: VZE = guo &
‘o .

V-B=0 VxB:eo/,Loa—E VB =guoB
ot Wave equations in E, B!

Electromagnetic waves propagate in free space:

Plane EM wave fronts: E = E, exp{ '(a)t —k- r)} with wavelength A = 27”

Propagati _e_ 1 — 8 ms!
pagation velocity of wave fronts: €= Tl =3x10°ms
Relationship between E and B: K K E|
(in phase and mutually orthogonal B=— xE E=—-c>—xB 1= =c
with wave vector k) @ @ |B|
Impedance of free space: = |E| —=1376.7Q
~ Bl/uo V
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21.6 Polarisation

» Linearly (or plane) polarised wave :

E

E has one specific orientation
» Circularly polarised wave :

Two linear components of E
superimposed at a right angle and
phase shifted by 7/2

0
» Elliptically polarised wave :

E 0 sin(wt)
0 | sin(wt)+ ( E ) sin(wt+ 7/2) = E ( cos(wt) )
0 0

As above but with unequal amplitudes
» Unpolarised :

E superimposed with all orientations
(with no fixed phase relationships _t

between components)
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21.7 Energy flow and the Poynting Vector

Recall : Energy of the electric field Us = [, 3 ¢o E? dV/
Energy of the magnetic field Upn = [, 21% B2dV
Total EM energy in volume U/ :

U:fl,% <€0E~E+;OB-B> dv

v

v

Energ;fjensity
In free space (J =0,p =0)

v

OE 1 0B
ot poeo” ot X
~~ —
Ampere’s Law Faraday’s Law

v

Calculate the rate of change of energy in I/ :
= J, (B B+ LB B)av
(@ T ) o
fy (E x B) dV
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Energy flow and the Poynting Vector continued

> Energy row out of volume V/ per unit time : N N
X
-5 = HO f]j E X B) av Su:a‘ies di /N
> AppIy the d|vergence theorem : dt
VolumeV N
—$s (—ExB) -da -
1o N P / \ \ N
Poynting Vector, N
% =—¢sN-da  where N=_LExB

Poynting vector N is the power per unit area flowing
through the surface bounded by volume V. (It also gives
the direction of flow). Units of N : [W m~2]

» For EM waves, the intensity is the time-average of |N|
=< |N| >=-LEy By < cos?(wt —k 1) > =
1/2
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21.8 Example : Poynting Vector for a long resistive cylinder

» Calculate Poynting Vector at the surface of the wire with
applied potential difference V and current I
N=lExB
» Electric field along wire axis : E = V//¢
Magnetic flux density at wire surface : ]
$B-dl=B-2ra=ppl

E
(note that this is tangential - along N
circumference) v o B
1V opol /
> N= i 72ma ?

(in radial direction pointing inwards -
i.e. wire heats up !)

» Hence N=(VI)/2nlg S A

surface area
» Total power dissipated inwire : P= [(N-da= VI
as expected from circuit theory.



Poynting Vector : summary

Total electromagnetic energy U contained in volume V: ’f‘ ;‘
1 1 N N
U:/—(80E~E+—B-B>dv ~u -
v?2 Ho Volume V N
L j N— —
7 N
energy density U, = a N / \ N
av N N
au 1 :
= —f N.da wth N— _—_ExB P°V”tt'”g
7 t s ,\ Uo vector
\
. _ )
Enerey flow rate Power per unit [N]=W/m
area through area
out of volume V R
bounding V
The intensity / of an EM wave is given by the time-average 71— (NI = 1 2
over the magnitude of the Poynting vector: - <| |> - 2cp, Ey
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