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1. Geometrical Optics 
 
1.1 Fermat's Principle 
 
    Light has been studied for a long time. Archimedes and other ancient Greek thinkers 
made original contributions but we mention here Heron of Alexandria (c. 10 - 75 AD) as 
he was the first to articulate what has come to be known as Fermat's Principle. Fermat, 
stated his principle as "Light travelling between two points follows a path taking the least 
time." The modern, and more correct version, is as follows: 
 
    "Light propagating between two points follows a path, or paths, for which the time 
taken is an extremum." 
 
    The principle has a theoretical basis in the quantum theory of light that avoids the 
question of how the light "knows" what direction to go in so that it will follow the 
maximal path! [Basically the wave function for the light consists of all possible paths but 
all, except the one corresponding to the classical path, destructively interfere owing to 
variations in the phase over the different paths.]  
 
    Fermat’s principle is the basis of Geometrical optics which ignores the wave nature of 
light. The principle may be used to derive Snell's Laws of reflection and refraction. 
 

 
  
 

Optical path length OAP = L, given by: 
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    For a maximum or minimum 
 

 0=
dx
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from which we find 2/dx =

Hence the incidence angle θ = reflection angle φ : Snell's law of reflection. 
     
Using a similar procedure we can derive Snell's law of refraction: 
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where θ1 and θ2 are the angles between the light ray and the normal to the surface 
between media of refractive index n1 and n2  respectively. 



Geometrical optics uses the effective rule of thumb that light travels in straight lines in a 
homogeneous medium of uniform refractive index. Deviations occur at boundaries 
between media of different refractive index or if the index varies in space. The path of 
light indicated by a ray can be plotted using Fermat’s Principle or its more useful form as 
Snell’s laws. This allows us to locate images of objects formed when light travels through 
complicated lens systems or, in the case of mirages, through a medium of spatially 
varying refractive index. 
 
 
1.2  Lenses and Principal Planes 
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Thin lens formula:  

1
u + 1

v = 1
f

 
 u,v   and  f   are measured to centre of lens of ``zero'' thickness. For an object at infinity  
u = ∞   parallel rays are focussed in the image plane where  v = f  . This defines the focal 
plane of a thin lens. 
For a thick or compound lens (composed of several individual lenses) the principal planes 
locate the position of an equivalent thin lens. (See Figures 1.1 and 1.2) The effective 
focal length is the distance from the principal plane to the associated focal plane.



1.3 Compound lens systems 
 
1.3.1 Telephoto lens 
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1.3.2 Wide angle lens 
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1.3.3 Telescope (Astronomical) 
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Figure 1.5
Angular magnification:  

M = ╱ = f o╱fE
 



 1.3.4 Telescope (Galilean) 
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Figure 1.6
Angular magnification:  M = ╱ = f o╱fE   
 
1.3.5 Telescope (Newtonian) 
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Figure 1.7
Angular magnification:  M = ╱ = f o╱fE   
 f o   is the focal length of the objective mirror and (for a spherical mirror surface) equals 
half the radius of curvature. 
 
1.3.6 Compound Microscope 
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Figure 1.8  
 
The object at distance u from objective with focal length fo is imaged at distance v. Real 
image is at focal length fE from eyepiece giving angular magnification β/α  where α  is 
the angle subtended by the real image if it was at the near point of the eye. 
 



1.4 Illumination of optical systems 
The brightness of an image is determined by the f-number (f/no.): 

f/no.= focal length
Diameter of Aperture

 
Aperture stops determine the amount of light reaching the image of an image forming 
optical system. 

Image of objective
in eyepiece

 
 
Figure 1.8 Size of objective is the effective aperture stop in a telescope. 
 
For lenses of given focal length, the size (diameter) of the lenses are chosen to match the 
aperture of the image recording system e.g. pupil of eye. Aperture stops for a telescope 
(or binocular) system will be chosen as follows: 
  Aperture stop (eye piece)  ≈   pupil of eye ( ∼  10 mm) 
  Aperture stop (objective) such that the size of the image of the objective formed by 
  the eyepiece ≈  pupil of eye 
 
  Aperture stops for a camera lens are set by an iris diaphragm over a range of f/no from 
1.2 t0 22. A small  f/no. is a large aperture and allows in more light. This then allows a 
shorter shutter time to expose the film (or CCD) - useful for moving objects. The 
disadvantage is a reduced depth of field (range of distances in focus in the image). 
 

(a) (b)  
Figure 1.9 Field stop provides even illumination to image formed by eyepiece. 
 
Off axis light in the telescope in Figure 1.9(a) spills past the eyepiece - the light to the 
image at this angle is reduced in intensity, the image darkens towards the edge. In Figure 
1.9(b) all light at a given angle through the objective reaches the image. There is equal 
brightness across the image at the expense of the field of view. 
Field stops: these ensure uniform illumination across the image by eliminating light at 
large off-axis angles. Light from the edges of the field of view reaches the image with the 
same intensity as light from the centre. 



Physical Optics 
 
2. Waves and Diffraction 
 
2.1 Mathematical description of a wave 
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  Figure 2.1  

u = uo cos(t − kz − ) or u = uoe−ie−i(t−kz)

 
 t  : phase change with time,   = 2

T   
 kz  : phase change with distance,  k = 2

   
   : arbitrary initial phase 
 
2.2 Interference 
Addition of amplitudes from two sources gives interference e.g. Young's slits: 
 

dsinθ

d θ

r1

r2

P

D
 

  Figure 2.2 Young's slits 
Two slits separated by  d  illuminated by monochromatic plane waves 
Amplitude up at a point P a large distance,  D, from the slits 

up = uo
r1

e−i(t−kr1) + uo
r2

e−i(t−kr2)

 
Putting  (r1 − r2 ) = d sin,    r1 ≈ r2 = r,  intensity is: 

Ip = 4 uo
r

2 cos2 ( 1
2 kd sin)

 



 2.3 Phasors 
Amplitude of wave is represented by length of a ``vector'' on an Argand diagram. 
Phase of wave represented by angle of vector relative to Real axis of the Argand diagram. 
The phasor is then:  uei   
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Figure 2.3 Phasor diagram 
 
Example: Young's slits. 
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    Figure 2.4 Phasor diagram for two slit problem. 
 
Amplitude from each slit on screen:  u o

r   
Phase difference    , owing to path difference  d sin :    = kd sin   
Resultant amplitude is then 

up = 2 uo
r cos(/2)

 
The intensity is therefore:        

Ip = 4 uo
r

2 cos2 ( 1
2

kd sin)
 

2.4 Diffraction from a finite slit 
Monochromatic plane wave incident on aperture of width  a   
Observation plane at large distance  D  from aperture. 
Amplitude in plane of aperture:  uo   per unit length. 
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Figure 2.5 Contributions to amplitude at P from elements  dy  in slit. 



An infinitesimal element of length d y   at position  y   contributes at P an amplitude:  

uody
r ei(y)

 
The phase factor  (y) = k(r ± ysin).   
The total amplitude at P arising from all contributions across the aperture:  

up = uo
r eikr ∫

−a/2

a/2

e−ik sin .ydy

 
The intensity is then:    )0(II p = sinc2β 

where      θβ sin
2
1 ka=  
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    Figure 2.6 Intensity pattern from single slit,  Ip = I(0)  sinc 2  . 

The first minimum is at ,πβ =   θ
λ
ππ sin22 a=  

Hence angular width  θ  of diffraction peak is:  

 = 
a

 
2.5 Diffraction from a finite slit: phasor treatment 

asinθ

+a/2

-a/2

θ
r

P

D
 

 
Figure 2.7 Construction showing elements at extreme edges of aperture contributing 
first and last phasors



On axis,  θ = 0  the phasor elements sum to  Ro  Off axis, θ ≠ 0  successive phase shifts 
between adjacent phasors bend the phasor sum to form a section of a regular polygon. 
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Figure 2.8 (a) Phasor diagram for finite slit showing resultant Ro for θ = 0 and θ ≠ 0 
The phase difference between first and last phasors for θ ≠ 0 is  

 = ka sin
 

In the limit as the phasor elements  → 0 the phasors form an arc of a circle of radius R. 
The length of the arc is Ro  and the length of the chord representing the resultant is Rp . 
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Figure 2.8 (b) Phasor diagram in the limit as phasor elements  →  0.   
The amplitude at θ relative to the amplitude at θ = 0 : 

length of chord
length of arc

= 2.Rsin(/2)
R. = sinc(/2)

 
Then the intensity at θ : 
          I(θ) = I(0) sinc2(δ/2) = I(0) sinc2β 
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Figure 2.9 Phasor diagram showing mimina for increasing phase shift δ between 
extremes of slit as     increases. 
 
The first minimum occurs when the phasor arc bends to become a full circle i.e. the phase 
difference between first and last phasor elements  δ  = 2π  angular radius is:  

 = 
a

 



2.6 Diffraction in 2 dimensions 
Recall that the amplitude resulting from a plane wave illumination of an aperture of the 
form of a slit of width a in the y - direction  :  

up = uo
r eikr ∫

−a/2

a/2

e−ik sin .ydy

 
Consider the aperture to have a width  b   in the  x  -direction, then the angular variation 
of the diffracted amplitude in the  x  -direction is : 

up = uo
r eikr ∫

−b/2

b/2

e−ik sin .xdx

In 2-D we have : up  eikr ∫
−b/2

b/2

∫
−a/2

a/2

u(x,y).e−ik(sin .x+sin .y)dxdy
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Figure 2.10 General 2-D aperture in x,y  plane. 
 u(x,y)  is the amplitude distribution function for the aperture. For a circular aperture of 
diameter a the diffraction pattern is a circular Bessel Function. The angular width to the 
first minimum is:     

     
a
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Figure 2.11. Point Spread Function for circular aperture. 
A point source imaged by a lens of focal length f  and diameter a gives a pattern with a 
minimum of radius f.  This is the Point Spread Function or instument function analogous 
to the impulse function of an electrical circuit giving its response to a δ-function impulse. 



3. Fraunhofer Diffraction 
So far we have considered diffraction by 
(a) Apertures or slits illuminated by plane waves 
(b) Observation at a large distance where the phase difference between contributions from 
secondary sources in the diffracting plane separated by y is given to a good approximation by:  

 = k sin. y
 

These are special cases where the phase difference     is a linear function of the position y in the 
diffracting aperture. 
 
3.1 Fraunhofer diffraction 
 
Definition: ``A diffraction pattern for which the phase of the light at the observation point is a 
linear function of position for all points in the diffracting aperture is Fraunhofer Diffraction.'' 
By linear we mean that the wave front deviates from a plane wave by less than  /20  across the 
diffracting aperture. 
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Figure 3.1 Wavefronts incident on and exiting from a plane aperture. 

(R + )2 = R2 + a2

 
             for ρ ≤ λ/20  R ≈ 10a2 /   
Alternatively,    
“Fraunhofer diffraction is the diffraction observed in the plane of an image  formed by an optical 
system.” 
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Figure 3.2 Fraunhofer condition for plane waves: image is at infinity as source is at focal 
length from lens. 
Consider a point source at the focal point of a lens so that collimated light (plane waves) are 
incident on an aperture behind the lens. The image of the source is at ∞.  
Fraunhofer Diffraction however will be observed at P if  BC ≤ λ/20  
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Figure 3.3 Fraunhofer diffraction observed in the image plane of a lens. 
 
If the observation point P lies in the image plane of the lens so that curved wavefronts converge 
from the lens to P then no plane waves are involved. The lens and diffracting aperture however 
can be replaced by an equivalent system where diffraction of plane waves occurs. Note however 
that this means plane waves are not necessary to observe Fraunhofer diffraction. The key 
criterion is that ... 
 
                    the phase varies linearly with position in the diffracting aperture. 
 
A further consequence of noting that Fraunhofer diffraction is observed in the image plane is that 
the position of the aperture is not important. 
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Figure 3.4 Equivalent lens system showing that Frauhofer diffraction is independent of 
position of aperture 



3.2 Diffraction and wave propagation 
 
Consider a plane wave surface at - z  . This reproduces itself at a second plane  z = 0 . Huygens 
secondary sources in the wave front radiate to a point P in the second plane. 
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Figure 3.5 Huygens secondary sources on plane wave at  −z   contribute to wave at P. 
 
The amplitude at P is the resultant of all contributions  from the plane at  −z.   

up =  ∫ uodS
r ( n, r ) eikr

 
 uo   is the amplitude from element of area d S  . 
 (  n,r )   is the obliquity factor - this accounts for the fact that the wave propagates only in the 
forward direction. n is a unit vector normal to the wave front 
    is a proportionality constant - to be determined. 
We determine α by a self-consistency argument i.e. the plane wave at -z must reproduce itself  
at z = 0   
We consider the amplitude at a point P a distance q from the wave such that q = mλ  where m is 
an integer and  m>>1 . i.e. P is a large distance from O a point on the wave front lying on a 
normal through P. 
We construct elements of the wavefront of equal area δA centred on O. 
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Figure 3.6 Construction of elements of equal area on plane wavefront. 
The first element is a circle, the n th   is an annulus of outer radius  n   



(n+1
2 − n

2 ) = A
 

Consequently the difference in distance δr from successive elements to P is constant 

r = rn+1 − rn 
A
2q

 
Therefore the phase difference between waves from successive elements is also constant: 

 = A
q

 
Hence we may treat contributions from each element of the wavefront as a Phasor. 
[Note: we ignore, for the moment, the small difference in amplitude at P between successive 
elements arising from the small increase in distance rn as ρn increases. We also ignore the small 
change in η(n,r)  
Add contributions of elements (phasors) until the last phasor added is     out of phase with the 
first. The area of the wavefront covered by these elements is the First Half Period Zone, 1st  HPZ. 
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Figure 3.7 Construction of the First Half Period Zone 
The difference in path-length from the outer element of the 1st HPZ to P and from O to P is  /2.   
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Figure 3.8 Phase shift of  λ/2 arises at edge of 1st HPZ 

 



 The radius of the 1 st   HPZ is     is given by:    

2 = q
 

Recalling our diffraction integral above we may write the contribution to the amplitude at P from 
the 1st  HPZ: 

 uo2
q = uo

 
From the phasor diagram, the amplitude from the 1st  HPZ is the length of the phasor arc,  
uo.   
The resultant Rπ is then the diameter of the circle of which the phasor arc defines half the 
circumference:  

R

2 = uo
 

The resultant phasor lies along the imaginary axis so: 

R = 2iuo
 

Add further elements until the final phasor is in phase with the first i.e. a phase difference of 2 .   
The area of the wavefront now defines the first Full Period Zone 1st  FPZ. 
The resultant from the 1st  FPZ is not exactly zero owing to the term 1/r  (inverse square law for 
intensity) and the obliquity factor  η(n,r) . 
Adding further elements gives a slow spiral. 

First Full-Period Zone Resultant of  FPZsn  
 
Figure 3.9 As n → ∞  resultant of zones tends to half the resultant of the 1st HPZ 
Adding contributions from the whole wave (integrating over infinite surface) gives resultant =  

1
2   

1st  HPZ. Therefore 

R∞ = iuo
 

Self-consistency demands that this wave at P matches the original wave at O: 
 

λα oo uiu =  



∴  = − i


 
Hence 

up = − i
 ∫ uodS

r ( n, r ) eikr

 
 
This is the Fresnel-Kirchoff diffraction integral.



 



4. Fourier methods in Optics 
 
4.1 The Fresnel-Kirchoff integral as a Fourier Transform 
 
The Fresnel-Kirchoff diffraction integral tells us how to calculate the field  Up  in an observation 
plane using the amplitude distribution uo in some initial plane 

up = − i
 ∫ uodS

r (n , r )eikr

 
We simplify as follows: 

1),( =rnη  
        Restrict to one dimension: dS → dx 
        Ignore  1

r   term by considering only a small range of r. 
        Use the Fraunhofer condition: 

eikr = eikr′ eik sin  x

 
        Absorb  eikr′   into the constant of proportionality: 
The amplitude up  as a function of angle θ  is then: 

up ⇒ A() =  ∫
−∞

∞

u(x)eixdx

 
where β = k sinθ . 

          We note that A(β) is the Fourier transform of u(x). 
Important result: 
 
The Fraunhofer diffraction pattern is the Fourier transform of the amplitude function of 
the diffracting aperture. 
  
More precisely: the Fraunhofer diffraction pattern expressed as the amplitude as a function of 
angle is the Fourier transform of the function representing the amplitude of the incident wave as a 
function of position in the diffracting aperture. The Fraunhofer diffraction is expressed as a 
function of   β = k sinθ   where θ is the angle of the diffracted wave relative to the wave vector k 
of the wave incident on the aperture. 
 
The inverse transform relation is:  

u(x) = 1
 ∫

−∞

∞

A()e−ixd

 
 



 
4.2 The Convolution Theorem 
 
The convolution of two functions f(x)  and g(x)  is a new function, h(x),  defined by: 

h(x) = f(x) g(x) = ∫
−∞

∞

f(x ′)g(x − x ′)dx ′

 
The Convolution Theorem states that the Fourier transform of a convolution of two functions is 
the product of the Fourier transforms of each of the two functions. 
The Fourier transform, F.T., of  f(x)   is  F()   
The Fourier transform, F.T., of  g(x)   is  G()   
The Fourier transform, F.T., of  h(x)   is  H()    

H() = F().G()
 

 
4.3 Some useful Fourier transforms and convolutions 
(a) We can represent a wave of constant frequency  o   as a function of time  t   

v(t) = Voe−iot

 

β  
  Figure 4.1 A wave of constant frequency (monochromatic) and its Fourier transform 

F.T.{v(t)} = V() = Vo ( − o)
 

i.e.  V(β) represents the spectrum of a monochromatic wave of frequency βο and is a delta 
function in frequency space. 
Alternatively the inverse transform relations allow us to represent the F.T. of a delta function: 

v(t) = Vo (t − t o ) as inverse F.T.{v(t)} = V() = Vo e−ito

 



(b) The double slit function, i.e. two delta-functions separated by d : 

v b (x) = (x ± d
2 )

Vb() = 2 cos( 1
2
d)

 
(c) A comb of delta functions: 
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Figure 4.2 A comb of    -functions and their transform  

v c(x) = ∑
m=0

N−1
(x − mx s)

 
The F.T. of  v c(x)   is:  

Vc() = ei
sin( 1

2
Nx s)

sin( 1
2
x s)

 
where  

 = 1
2

(N − 1)x s

 
The factor α is simply the consequence of starting our comb at x = 0. This factor can be 
eliminated by shifting our comb to sit symmetrically about the origin. This result illustrates the 
“Shift Theorem”. 
 
(d) The top-hat function:  

v d (x) = 1 for |x |  a
2

v d(x) = 0 for |x | > a
2

Vd() = a sinc( 1
2 a)

 
[What would be the result if the top-hat was shifted to sit between x = 0 and x = a?] 
 
 



Now some useful convolutions: 
 
(e) The double slit:  

v s(x) = v b (x) v d (x)
 

(f) The grating function: 

v g(x) = v c(x) v d(x)
 

(g) The triangle function: 

vΔ(x) = v d(x) v d (x)
 

This is a self-convolution. The self-convolution is known also as the autocorrelation function. 
 
 
4.4 Fourier Analysis 
 
A periodic function V(t) may be represented by a Fourier series. 

V(t) = co + ∑
p=1

∞

cp cos(po t) + ∑
p=1

∞

sp sin(po t)

 
V(t) is the result of synthesis of the set of Fourier components. 
Fourier analysis is the reverse process - finding the components (amplitude and phase) that make 
up V(t).  The coefficients are found by integrating the function over a period τ of the oscillation. 

sp = 2
 ∫ 0

 V(t)sin(po t) dt

cp = 2
 ∫ 0

 V(t)cos(po t) dt

co = 2
 ∫ 0

 V(t) dt
 

In general: 

V(t) = ∑
p=1

∞

Ape−ipot

Ap = 1
 ∫ 0

 V(t) eipotdt
 

 
This last expression represents a Fourier transform - suggesting that this operation analyses the 
function V(t)  to find the amplitudes of the Fourier components Ap. 
 



4.5 Spatial frequencies 
 
Consider a plane wave falling normally on an infinite screen with amplitude transmission 
function: )sin(1)( xxu sω+=  i.e. a grating with periodic pattern of width 

d = 2
 s

 
This defines the spatial frequency: 

 s = 2
d

 
The Fraunhofer diffraction pattern is then: 

A() =  ∫
−∞

∞

u(x)eixdx

 
where β = k sinθ . We find:  

d

A s

λθθ

ωββ

±=≈

±==

or  0sin   i.e.

,0for except  0)(
 

The sinusoidal grating has a Fraunhofer diffraction pattern consisting of zero order and + first 
orders πλωλθ 2// sd ±=±= . 
An additional spatial frequency ωn  will lead to additional first orders a πλωθ 2/n±= . 
[Note: a finite screen will result in each order being spread by the diffraction pattern of the finite 
aperture, i.e. the “spread function” of the aperture.] 
 
4.6 Abbé theory of imaging 
 
We consider an object consisting of an infinite screen having a sinusoidal transmission described 
by a function u(x) so that the amplitude transmission repeats with a spacing d. This acts as an 
object at a distance u from a lens of focal length f. 
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Figure 4.3 Object u(x) imaged by lens to v(x). 
 
Diffraction orders are waves with parallel wave vectors at angles θ = 0 and +λ/d. 
A lens brings these parallel waves to a focus as “points” in the focal plane separated by a = fλ/d. 



Apart from a phase factor, the amplitude in the focal plane is the F.T. of  u(x) . This plane is the 
Fourier plane. 
Zero and first order “points” act as coherent sources giving two-beam interference at positions 
beyond the focal plane. In the image plane, distance v from the lens, the interference pattern is 
maximally sharp, v = f + D . 
The interference pattern is a sinusoidal fringe system with spacing:  

d ′ = D
a

 
From geometry  

d
u = d ′

v
 

Hence:  

1
u + 1

v = 1
f

 
For a finite grating the “points” will be spread by diffraction at the effective aperture of the 
grating. [Note that we can describe such a grating as a convolution of an infinite sine wave with a 
top-hat function.] 
Any object amplitude distribution may be synthesised by a set of sinusoidal functions. Each 
Fourier component with a specific spatial frequency contributes + orders to the diffraction pattern 
at specific angles θ  to the axis. The aperture α of the lens and object distance u determine the 
maximum angle θ max  that may be collected. Diffraction orders at angles greater than θ max do not 
contribute to the final image. The corresponding spatial frequencies will be missing from the 
image. Higher spatial frequencies contribute to sharp edges in the object distribution. The lack of 
high spatial frequencies in the image leads to blurring and loss of resolution. 
[Note: the discussion so far is valid only for coherent light i.e. light waves having a fixed phase 
relationship across the aperture in the object plane. In practice for microscopic objects this 
condition is partially fulfilled even for white light illumination.] 
 
4.7 The Compound Microscope  
 
Figure 4.4 shows the arrangement of the compound microscope. Basically a very short focal 
length lens, the objective, forms a real, inverted, image of the specimen in the image plane, 
giving a linear magnification of v/u. The eye-piece is basically a simple magnifier used to view 
the real image which is located at the focal length of the eyepiece giving a virtual image at 
infinity. This allows viewing with minimum eyestrain. The minimum dimension of spatial 
structure in the object dmin that can be resolved is such that the associated diffraction order will be 
at the maximum angle θ max that can be collected by the objective lens. 
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Figure 4.4 The Compound Microscope. The object at distance u from objective with focal 
length f o   is imaged at distance v. Real image is at focal length f E   from eyepiece giving 
angular magnification  /   where     is the angle subtended by the real image if it was at the 
near point of the eye. 
 
Spatial frequencies having dimensions smaller than  dmin   will lead to diffraction to larger angles, 
miss the objective and thus not appear in the image. The minimum spatial dimension dmin that can 
be resolved may be increased by immersing the objective and object in oil of refractive index no; 
the oil immersion objective:  

no sinmax = 
dmin

 
   nosinθmax is the Numerical Aperture and defines the ultimate resolution of the device. 

θmax

 
Figure 4.5. First order diffracted waves from spatial structures < dmin are collected by the lens 
and interfere in the image plane with zero order waves to form sinusoidal structure in the 
image. Light from smaller spatial structures (higher spatial frequencies)  are diffracted to 
angles >  θmax, miss the objective and do not interfere with zero order in the image.  
 
4.7 Diffraction effects on image brightness 
 
Normal image brightness is determined by the f/no. of the optical system i.e. f/dA where dA is the 
limiting aperture. When the image size approaches the order of the PSF ~ λ/dA light is lost from 
the image by diffraction. This is diffraction limited imaging. 
For non-diffraction limited imaging:   Image brightness 2

Ad∝  
For diffraction limited imaging:   Image brightness 4

Ad∝  



5 Optical instruments and fringe localization 
 
Optical instruments for spectroscopy use interference to produce a wavelength-dependent 
pattern. The interfering beams are produced either by division of wavefront or by division of 
amplitude. The diffraction grating divides the wavefront into multiple beams. The Michelson 
divides the amplitude into two beams and the Fabry-Perot interferometer divides the amplitude 
into multiple beams. It is important to know where to look for the fringes. Before looking at 
specific instruments we consider the general question of fringe localization. 
 
5.1 Division of wavefront 
 
(a) Two-slit interference, Young's Slits 

non-localised 
fringes

 
  Figure 5.1 Young's slit fringes are observed throughout the region beyond the screen 
containing the two slits. 
The fringes are non-localized and usually observed under the Fraunhofer condition. 
 
(b) N-slit diffraction, the diffraction grating. 

θ θ

to 8

f  
  Figure 5.2 Diffraction grating fringes. 
Again we usually observe the Fraunhofer condition. A monochromatic plane wave is diffracted 
i.e. suffers constructive interference at angle  .   Parallel light interferes at infinity or in the focal 
plane of a lens. The fringes are localized at infinity or in the image plane of the instrument. 
 
5.2 Division of amplitude 
 
The interference may involve two beams (Michelson) or multiple beams (Fabry-Perot). The 
situations are modelled by reflection of light from a source at two surfaces. The source may be a 
point or extended and the surfaces may be at an angle (wedged) or parallel. The images of the 
source in the reflecting surfaces act as two effective sources. 



5.2.1 Point source 
(a) Wedge. 

P’

P

O  
  Figure 5.3 A point source O provides images P, P' in reflecting surfaces forming a wedge. 
This system is equivalent to 2-point sources or Young's slit situation. Therefore the fringes are 
non-localized fringes of equal thickness.   .   
 
(b) Parallel 

OPP’

θ

θ’
 

  Figure 5.4 A point source reflected in two parallel surfaces again provides two images P, P'  
This is similar to the wedge situation with 2-point sources. The fringes are non-localized fringes 
of equal inclination.   
 
5.2.2 Extended source 
(a) Wedge 

P’

P

R

O
S

R’

 
Figure 5.5. Extended source OS provides two images PR and P'R' by reflection at wedged 
reflecting surfaces. 
Each point on the extended source produces non-localized fringes. Overlap of all these patterns 
gives no visible fringes. However at the apex of the wedge the path difference is zero and is the 
same for all points on the effective sources so fringes are visible in this region. The zero order 
fringe is a straight line fringe in the plane of the wedge. Other low-order fringes may be seen if 
the source is not too large and the wedge angle not too big. The fringes are of equal thickness 
and localized in the plane of the wedge e.g. Newton's Rings. 



(b) Parallel 
t

2t=x

sourceimages

2t=x

α

path difference cos x α

circular fringe
constant α  

Figure 5.6 Upper figure shows two images of extended source by reflection in parallel slab of 
thickness t.  Lower figure shows fringes of equal inclination formed in focal plane of a lens by 
light from the two images of the source. 
 
Close to plate overlapping patterns lead to no visible fringes. At large distance the fringes 
become wider and exceed the displacement of the overlap. Fringes become visible and are 
fringes of equal inclination and localized at infinity. These fringes are more conveniently 
observed in the focal plane of a lens. e.g. the eye. 
Reflecting surfaces separated by t lead to two images separated by 2t or x = 2t. Parallel light at 
an angle of inclination α to the axis from equivalent points on the effective sources are brought 
together in the focal plane. The path difference is xcosα  and the phase difference δ: 

 = 2


x cos
 

Bright fringes (constructive interference) occurs when the phase difference δ = p2π  (p = 
integer) or 

λα px =cos  
 

For small angles the angular size of the fringes is given by  

p
2 − p+1

2 = 2
x

 
Hence radii of fringes in focal plane of lens with focal length  f :  

rp
2 − rp+1

2 = 2f2
x

 
As x increases, fringes get closer together 
As x decreases → 0 fringes get larger and fill the field of view. 
The behaviour of the fringes formed by parallel surfaces will be important for the Michelson and 
Fabry-Perot interferometers. 



6 The diffraction grating spectrograph 
 
6.1 Interference pattern from a diffraction grating 
Consider a plane wave of wavelength λ incident normally on a reflecting or transmitting grating 
of N slits separated by d.  The amplitude contributed by each slit is u and the intensity of the 
interference pattern is found by adding amplitudes and taking the squared modulus of the 
resultant. 
(1)  N = 2 

0 π 2π δ

I

N = 2

δ = 0

δ = π

δ = 2π

4

 
Figure 6.1  Intensity pattern and associated phasor diagram for 2-slit interference 

I() = 4u2 cos2 ( 
2

)
 

where  

 = 2


d sin
 

Principal maxima at πδ 2,0 n= , of intensity 4u2. 1 minimum beween principal maxima. 
 
(2)  N = 3 

0 π 2π δ

δ = 0

I
δ = 2π/3

δ = π

δ = 4π/3

δ = 2π

N = 3
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Figure 6.2 Phasor diagrams for 3-slit interference and intensity pattern 
Using phasors to find resultant amplitude 
(a)  πδ 2,0 n=   Principal maxima of intensity 9u2. 2 minima between principal maxima. 
(b)  3/2πδ =         Minimum / zero intensity 
(c)  πδ =    Subsidiary maxima of intensity u2  
(d)  3/4πδ =          Minimum / zero intensity 
 
(3)  N = 4 
Principal maxima at πδ 2,0 n=  of intensity 16u2 . 3 minima between principa maxima. 



 
In general: 

Principal maxima at πδ 2,0 n= , intensity .2N∝  (N – 1)  minima at 
N

n π2   

and width of principal maxima  N
1∝  . 

δ = 0

δ 

δ = 2π/N

δ 

δ = 4π/N δ = 2 π/m N

I

π 2π0
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N
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Figure 6.3 Phasor diagrams for N-slit interference and intensity pattern 
Amplitude of  N phasors: 

A = u + ue−i + ue−i2 + ... + ue−i(N−1)

 
Hence intensity:  

I() = I(0)
sin2( N

2
)

sin2 ( 
2

)
 

6.2 Effect of finite slit width 
 
Grating of  N slits of width a separated by d is a convolution of a comb of N  δ−functions  with a 
single slit (top-hat function):  

f(x) = ∑
p=0

N−1
(x − pd) ; g(x) = 1, for {− a

2
 x  a

2
}; g(x) = 0, for {|x | > a

2
}

 

h(x) = f(x) g(x)
 

Using the Convolution Theorem with, 

F() = F.T.{f(x)}, G() = F.T.{g(x)} and H() = F.T.{h(x)}
 



H() = F().G()
 

Hence  

|H()|2 = I() = I(0)
sin2 ( N)

2
)

sin2 ( 
2

)
.

sin2( 
2

)

( 
2

)2

 
where θδ sinkd=  and θγ sinka=  
 
 
6.3 Diffraction grating performance 
 
6.3.1 The diffraction grating equation 
The equation for  I()   gives the positions of principal maxima,  πδ 2,0 n= , n is an integer: the 
order of diffraction (this is also the number of wavelengths in the path difference). 
For simplicity we consider normal incidence on the grating. Then principal maxima occur for  

d sin = n
 

6.3.2 Angular dispersion 
The angular separation dθ  between spectral components differing in wavelength by dθ: 

d
d

= n
dcos

 
6.3.3 Resolving power 

λ+ λdλ

δ

Δδ =min
2π
N

2nπ

(a)

λ+ λdλ

θ

Δθ =min Δθλ

θp

(b)  
Figure 6.4 (a) Principal maxima for wavelength λ  and for  λ + dλ  such that the phase shift  δ 
for the two differs by the change in δ  between the maxima and first minima. (b) The same 
situation plotted as a function of diffraction angle θ. The angular width to the first minimum 
Δθmin equals the angular separation Δθλ  between the two wavelengths. 
Principal maxima for wavelength λ occur for a phase difference of δ = n2π. The change in phase 
difference δ between the maximum and the first minimum is Δδmin . 



Δmin = ± 2
N

 
and  

 = 2


d sin
 

Angular width to first minimum Δθmin  is found from  

d
d

= 2


dcos

 
So  

Δmin = 2


d cos.Δmin

 
The angular separation Δθλ   of principal maxima for λ and λ + Δλ is found from:  

d
d

= n
dcos

 

Δ = n
dcos

Δ
 

The resolution criterion is:  

Δ = Δmin
 

Hence the Resolving Power is:  


Δ

= nN
 

 
6.3.4 Free Spectral Range 
 
nth order of λ and (n + 1)th order of (λ + ΔλFSR)  lie at same angle θ . 
{ ))(1(sin λλθλ Δ−+== ndn }  Hence overlap occurs for these wavelengths at this angle. 
The Free Spectral Range is thus:  

ΔFSR = 
(n + 1)

 
Note: the Resolving Power  ∝ n   and the FSR  ∝ 1/n.   
 
 
 



6.4 Blazed (reflection) gratings 
 
The Blaze angle ξ is set to reflect light into the same direction as the diffracted order of choice 
for a given wavelength. For incident angle φ and diffracted angle θ  the blaze angle will be :  

)(
2
1 θφξ +=  

where φ  and θ  satisfy the grating equation  

d(sin ± sin) = n
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Figure 6.5 (a) Diffraction angle   ≠   Reflection angle     for ordinary grating. (b) Blazed 
grating reflects light at same angle as diffracted order 
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Figure 6.6 (a) Grating intensity pattern and single slit diffraction pattern.  
(b) Effect of single slit diffraction envelope on grating diffraction intensity for unblazed 
grating. (c) Grating intensity pattern for blaze set to reflect light into 2nd order. 



 
 
6.5 Effect of slit width on resolution and illumination 
 
Consider the imaging forming system consisting of two lenses of focal length f1 and f2 . The 
image of a slit of width Δxs  has a width:  

Δx i = f2

f1
Δx s

 
 

(a)

Δxs

(b)

Δxs θ

grating
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Figure 6.7 (a) Image forming system to image slit of width Δxs  to image Δxi . (b) Images of slit 
are spectrally dispersed by diffraction at grating. Slit is imaged at angle θ   from diffraction 
grating leading to foreshortening by cosθ. 
 
In a diffraction grating spectrograph the image is viewed at the diffraction angleθ and so is 
foreshortened by cosθ . 

Δx i = f2

f1 cos
Δx s

 
The minimum resolvable wavelength difference, ΔλR , has an angular width ΔθR :  

ΔR = n
d cos

ΔR

 
Wavelengths having difference ΔλR are separated in the image plane of lens f2  by ΔxR : 

Δx R = f2
Nd cos

 

where we used 
nNR
λλ =Δ  

Resolution is achieved provided:       Δx i ≦ Δx R  



 
 
The limiting slit width  Δxs  is then: 

Δx s 
f1
Nd

or Δx s 
f1
W

 
Note: the optimum slit width is such that the diffraction pattern of the slit just fills the grating 
aperture, W = Nd. 
 
   Δx s > Δx R : resolution reduced by overlap of images at different wavelengths  
   Rs xx Δ<Δ :  resolution not improved beyond diffraction limit but image brightness is reduced. 



7 The Michelson (Fourier Transform) Interferometer 
 
A two-beam interference device in which the interfering beams are produced by division of 
amplitude at a 50:50 beam splitter. 

t

Light source

Detector

M2

M/
2 M1

CP BS

 
Figure 7.1 The Michleson interferometer. The beam splitter BS sends light to mirrors M1 and 
M2 in two arms differing in length by t. '

2M   is image of M2 in M1 resulting effectively in a 
pair of parallel reflecting surfaces illuminated by an extended source as in figure 5.6. CP is a 
compensating plate to ensure beams traverse equal thickness of glass in both arms. 
 
7.1 Michelson Interferometer 
Distance from beam splitter to mirrors differs by t in the two paths, and α is the angle of 
interfering beams to the axis. Resulting phase difference between beams:  

    
 = 2


2t cos = 2


x cos

     (7.1) 
Constructive interference at δ = 2pπ, where p is an integer.  

     
x cos = p

      
On axis the order of interference is  p = x/λ . 
Symmetry gives circular fringes about axis. The fringes are of equal inclination and localized at 
infinity. They are viewed therefore in the focal plane of a lens. Fringe of order p has radius rp in 
the focal plane of a lens (focal length, f,  see section 5.2.2(b).  

     
rp

2 − rp+1
2 = 2f2

x
     (7.2) 

Two-beam interference pattern:  
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    (7.3) 

where  
λ

ν 1
=  , the wavenumber. 



xν
Input spectrum                         Detector signal
                                               Interferogram  

Figure 7.2 Input spectrum of monochromatic source and resulting interferogram obtained 
from scanning Michelson interferometer.  
 
7.2 Resolving Power of the Michelson Spectrometer. 
 
Consider that we wish to resolve two wavelengths λ1 and λ2 that differ by Δλ. The corresponding 
wavenumbers are 1ν  and 2ν  and they provide two independent interferograms so the resultant is 
the sum of the two:  

I(x) = 1
2

I0( 1)[1 + cos2 1x] + 1
2

I0 ( 2 )[1 + cos2 2x]
 

Let the two components have equal intensity: so  I0( 1) = I0( 2) = I0( )  is the intensity of 
each interferogram at x = 0. Then  

  
I(x) = I0( ) 1 + cos2  1 +  2

2
x cos2  1 −  2

2
x

  (7.4) 
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Figure 7.3 (a) Interferogram of source component  1ν  (b) interferogram of source component  

2ν .  (c) Interferogram of combined light showing added intensities (a) and (b). Note visibility 
of fringes cycles to zero and back to unity for equal intesity components. To resolve the 
complete cycle requires a path difference xmax  



 

This looks like an interferogram of a light source with mean wavenumber  
 1+  2

2   multiplied 

by an envelope function  cos2  1−  2
2

x  . This envelope function goes first to a zero when a 
“peak” of interferogram for   1   first coincides with a zero in the interferogram for   2  . The 
visibility (or contrast) of the fringes cycles to zero and back to unity; the tell-tale sign of the 
presence of the two wavelength components. The number of fringes in the range covering the 
cycle is determined by the wavenumber difference  Δ =  1 −  2  . The instrument will have 
the power to resolve these two wavenumbers (wavelengths) if the maximum path difference 
available, xmax, is just sufficient to record this cycle in the envelope of the interferogram. The 
minimum wavenumber difference  Δ min   that can be resolved is found from the value of xmax 
giving the cycle in the cosine envelope function:  

2 Δ min
2

x max = 
 

     

Δ min = 1
x max

     (7.5) 
This minimum resolvable wavenumber difference is the instrument function as it represents the 
width of the spectrum produced by the instrument for a monochromatic wave.  

     

Δ Inst = 1
x max

     (7.6) 
Hence the Resolving Power RP is:  

    

RP. = 
Δ Inst

= 
Δ Inst

=
x max


    (7.7) 

 
7.3 The Fourier Transform spectrometer 
 
Comparing Figure 7.2 with figure 4.1 we see that the interferogram looks like the Fourier 
transform of the intensity spectrum. The interferogram produced using light of two wavenumbers  
 1   and   2   is  

I(x) = 1
2

I0 ( 1 )[1 + cos2 1x] + 1
2

I0( 2)[1 + cos2x]
 

In the case of multiple discrete wavelengths:  

I(x) = ∑
i

1
2 I0( i)[1 + cos2 ix]

= ∑
i

1
2

I0( i) + ∑
i

1
2

I0( i)cos2 ix

 



First term on r.h.s. is ½ Io  where Io is the total intensity at x = 0  
Second term on r.h.s. is sum of individual interferograms. 
Replacing components with discrete wavenumbers by a continuous spectral distribution:  

I(x) = 1
2

I0 + ∫ 0
∞ S( )cos2 ix.d

 
where  S( )   is the power spectrum of the source. 
Now  S( ) = 0  for   < 0,   so second term may be written: 
 

    
F(x) = ∫ −∞

∞ S( )cos2 ix.d
    (7.8) 

 F(x) is the cosine Fourier Transform of S )(ν   

F.T.{S( )} = I(x) − 1
2

I0

 
Or 

    
S( ) ∝ F.T. I(x) − 1

2 I0

     (7.9) 
Apart from a constant of proportionality the Fourier transform of the interferogram yields the 
Intensity or Power Spectrum of the source. See Figure 7.2. 
 
The Michelson interferometer effectively compares a wavetrain with a delayed replica of itself. 
The maximum path difference that the device can introduce, xmax, is therefore the limit on the 
length of the wavetrain that can be sampled. The longer the length measured the lower the 
uncertainty in the value of the wavenumber obtained from the Fourier transform. Distance x and 
wavenumber ν  are Fourier pairs or conjugate variables.[see equation (7.9)] This explains why 
the limit on the uncertainty of wavenumber (or wavelength) measurement  νΔ Inst  is just the 
inverse of  xmax.  In essence this explains the general rule for all interferometers including 
diffraction grating instruments that:  

  

Δ Inst = 1
Maximum path difference between interfering beams

 

  (7.10) 
 
7.4 The Wiener-Khinchine Theorem 
 
Note: this topic is NOT on the syllabus but is included here as an interesting theoretical 
digression. 
The recorded intensity I(x) is the product of two fields, E(t) and its delayed replica E(t + τ )   
integrated over many cycles. (The delay  τ  = x/c. ) The interferogram as a function of the delay 
may be written:  



    
() = ∫ E(t)E(t + )dt

    (7.11) 
Taking the integral from  −∞   to  +∞   we define the Autocorrelation Function of the field to be  

    
Γ() = ∫ −∞

∞ E(t)E(t + )dt
    (7.12) 

The Autocorrelation Theorem states that if a function E(t)  has a Fourier Transform F(ω)  then  

   
F.T.{Γ()} = |F()|2 = F∗().F()

   (7.13) 
Note the similarity between the Autocorrelation theorem and the Convolution Theorem. 
The physical analogue of the Autocorrelation theorem is the Wiener-Kinchine Theorem. 
 
  “The Fourier Transform of the autocorrelation of a signal is the spectral power density of 
the signal” 
 
The Michelson interferogram is just the autocorrelation of the light wave (signal).  
Note that ω and ν  are related by a factor 2πc where c is the speed of light. 
 
7.5 Fringe visibility. 
 
7.5.1 Fringe visibility and relative intensities 
 
Figure 7.3 shows an interferogram made up of two independent sources of different wavelengths. 
The contrast in individual fringes of the pattern varies and we define the “visibility” of the 
fringes by  

    
V = Imax − Imin

Imax + Imin
     (7.14) 

 The fringe visibility “comes and goes” periodically as the two patterns get into and out of step. 
The example shown consisted of two sources of equal intensity. The visibility varies between 1 
and 0. If however the two components had different intensity  I1( 1)   and  I2( 2)  then the 
envelope function of the interferogram does not go to zero. The contrast of the fringes varies 
from  I1( 1) + I2 ( 2 )   at zero path difference (or time delay) to a minimum value of  
I1( 1 ) − I2( 2 )  . Denoting the intensities simply by I1 and I2. 

Vmax = (I1 + I2 ) − 0
(I1 + I2 ) + 0

; Vmin = I1 − I2
I1 + I2

 

Hence  
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=  (7.15) 

 
Measuring the ratio of the minimum to maximum fringe visibility Vmin / Vmax allows the ratio of 
the two intensities to be determined. 



7.5.1 Fringe visibility, coherence and correlation 
 
When the source contains a continuous distribution of wavelengths/wavenumbers the visibility 
decreases to zero with increasing path difference x and never recovers. The two parts of each of 
the Fourier components (individual frequencies) in each arm of the interferometer are in phase at 
zero path difference (zero time delay). At large path differences there will be a continuous 
distribution of interferograms with a range of phase differences that “average” to zero and no 
steady state fringes are visible. The path difference xo introduced that brings the visibility to zero 
is a measure of the wavenumber difference  Δ L   across the width of the spectrum of the source.  

    
Δ L ≃ 1

x o
      (7.16) 

 Δ L   is the spectral linewidth of the source. 
 
A source having a finite spectral linewidth i.e. every light source (!) may be thought of as 
emitting wavetrains of a finite average length. When these wavetrains are split in the Michelson, 
and recombined after a delay, interference will occur only if some parts of the wavetrains 
overlap. Once the path difference x exceeds the average length of wavetrains no further 
interference is possible. The two parts of the divided wavetrain are no longer “coherent”. The 
Michelson interferogram thus gives us a measure of the degree of coherence in the source. A 
perfectly monochromatic source (if it existed!) would give an infinitely long wavetrain and the 
visibility would be unity for all values of x.  The two parts of the divided wavetrain in this case 
remain perfectly correlated after any delay is introduced. If the wavetrain has random jumps in 
phase separated in time on average by say τc then when the two parts are recombined after a 
delay τd < τc only part of the wavetrains will still be correlated. The wavetrains from the source 
stay correlated with a delayed replica only for the time τc which is known as the coherence time. 
Thus we see that the Michelson interferogram provides us with the autocorrelation function or 
self-correlation along the length of the electromagnetic wave emitted by the source. (see section 
4.3) In other words the Michelson provides a measure of the “longitudinal coherence” of the 
source. 
 
[Note. Light sources may also be characterised by their “transverse coherence”. This is a 
measure of the degree of phase correlation the waves exhibit in a plane transverse to the direction 
of propagation. Monochromatic light emanating from a “point” source will give spherical 
wavefronts i.e. every point on a sphere centred on the source will have the same phase. Similarly 
a plane wave is defined as a wave originating effectively from a point source at infinity. Such a 
source will provide Young’s Slit interference no matter how large the separation of the slits. (The 
fringes, of course, will get very tiny for large separations.) If the slits are illuminated by two 
separate point sources, with the same monochromatic wavelength but with a small displacement, 
then two sets of independent fringes are produced. The displacement of the sources gives a 
displacement of the two patterns. For small slit separation this may be insignificant and fringes 
will be visible. When, however, the slit separation is increased the “peaks” of one pattern overlap 
the “troughs” of the other pattern and uniform illumination results. The separation of the slits in 
this case therefore indicates the extent of the spatial correlation in the phase of the two 
monochromatic sources i.e. this measures the extent of the transverse coherence in the light from 
the extended source.] 



8. The Fabry-Perot interferometer 
 
This instrument uses multiple beam interference by division of amplitude. Figure 8.1 shows a 
beam from a point on an extended source incident on two reflecting surfaces separated by a 
distance d. Note that this distance is the optical distance i.e. the product of refractive index n and 
physical length. For convenience we will omit n from the equations that follow but it needs to be 
included when the space between the reflectors is not a vacuum. An instrument with a fixed d is 
called an etalon. Multiple beams are generated by partial reflection at each surface resulting in a 
set of parallel beams having a relative phase shift δ introduced by the extra path 2dcosθ  between 
successive reflections which depends on the angle θ of the beams relative to the axis. (See section 
5.2.2 (b) ). Interference therefore occurs at infinity - the fringes are of equal inclination and 
localized at infinity. In practice a lens is used and the fringes observed in the focal plane where 
they appear as a pattern of concentric circular rings. 
 
8.1 The Fabry-Perot interference pattern 
This is done in all the text books (consult for details). The basic idea is as follows: 
 

d

Eo

tr

t

Eot2

tr3

tr5

tr2

Eot r2 2 -ie δtr4

Eot r2 4 -i2e δ

Eot r2 6 -i3e δ

θ

 
 
Figure 8.1 Multiple beam interference of beams reflected and transmitted by parallel surfaces 
with amplitude reflection and transmission coefficients r , ti i  respectively. 
 
Amplitude reflection and transmission coefficients for the surfaces are r1, t1 and r2, t2,  
respectively. 
The phase difference between successive beams is:  

           θ
λ
πδ cos22 d=                                                     (8.1) 

An incident wave  Eoe-iωt  is transmitted as a sum of waves with amplitude and phase given by:  

Et  E0 t1 t2e−it  E0 t1 t2r1r2e−it−  E0 t1 t2r1
2r2

2e−it−2 . . .etc.
 

 
Taking the sum of this Geometric Progression in  r1r2eiδ   



Et  E0 t1 t2eit 1
1 − r1r2ei

 
 and multiplying by the complex conjugate to find the transmitted Intensity: 

It  EtEt
∗  E0

2 t1
2 t2

2 1
1  r1

2r2
2 − 2r1r2 cos

 
 
writing  E0

2  I0  ,  r1r2  R  and  t1 t2  T,   and  cos  1 − 2 sin2/2 :  
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If there is no absorption in the reflecting surfaces  T  1 − R   then defining  
 

Φ=
− 2)1(
4

R
R      (8.3) 
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This is known as the Airy Function. See figure 8.2 
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Figure 8.2 The Airy function showing fringes of order m, m+1 as function of    .
 
8.2 Observing Fabry-Perot fringes 
The Airy function describes the shape of the interference fringes. Figure 8.2 shows the intensity 
as a function of phase shift  δ. The fringes occur each time δ is a multiple of 2π  . 
 

πθ
λ
πδ 2cos22 md ==     (8.5) 

 



m is an integer, the order of the fringe. The fringes of the Airy pattern may be observed by a 
system to vary d, λ, or θ.  A system for viewing many whole fringes is shown in figure 8.3. An 
extended source of monochromatic light is used with a lens to form the fringes on a screen. Light 
from any point on the source passes through the F.P. at a range of angles illuminating a number 
of fringes. The fringe pattern is formed in the focal plane of the lens. 

Extended
Source

Lens

Lens

Fabry-Perot
interferometer

d

Screen

 
Figure 8.3. Schematic diagram of arrangement to view Fabry-Perot fringes. Parallel light 
from the Fabry-Perot is focussed on the screen. 
 
From equation (8.5) the mth fringe is at an angle θm  

d
m

m 2
cos λθ =      (8.6) 

 
The angular separation of the mth  and (m  + 1)th fringe is  Δθm  is small so θm ≈ θm+1

Δm  
2d  constant

 
Therefore the fringes get closer together towards the outside of the pattern. The radius of the θm  
fringe is  

⎟
⎠
⎞

⎜
⎝
⎛== −

d
mff m 2

cos)( 1 λθλρ     (8.7) 

 
An alternative method to view fringes is “Centre spot scanning”. A point source or collimated 
beam may be used as the source and imaged on a “pinhole”. Light transmitted through the 
pinhole is monitored as a function of  d or λ.  Fringes are produced of order m linearly 
proportional to d or ν , (1/λ). This also has the advantage that all the available light is put into the 
detected fringe on axis. 
 
 
 



8.3 Finesse 
The separation of the fringes is 2π in δ-space, and the width of each fringe is defined by the half-
intensity point of the Airy function i.e.  It/I0  1/2  when  

 sin2/2  1
 

 
The value of δ at this half-intensity point is δ1/2 

sin2 1/2

2  1


 
δ1/2 differs from an integer multiple of  2   by a small angle so we have: 

1/2  2


 
The full width at half maximum FWHM is then Δδ 
 

Δ  4


 
 
The sharpness of the fringes may be defined as the ratio of the separation of fringes to the 
halfwidth FWHM and is denoted by the Finesse F 

2
2 Φ

=
Δ

=
π

δ
πF      (8.8) 

or  

)1( R
RF

−
=

π       (8.9) 

So the sharpness of the fringes is determined by the reflectivity of the mirror surfaces. 

[Note that  F~ 3
1−R .   This gives a quick check to ensure the quadratic equation for R  has been 

solved correctly!] 
 
8.4 The Instrumental width 
The width of a fringe formed in monochromatic light is the instrumental width:  

FInst
πδ 2

=Δ       (8.10) 

 ΔInst   is the instrument width in terms of the apparent spread in wavenumber produced by the 
instrument for monochromatic light. For on-axis fringes (cosθ = 1): 

  22d

d  22d d
 



Hence d  ΔInst  22d ΔInst  2
F and:

 

dF
Inst

2
1

=Δν       (8.11) 

  
 
8.5 Free Spectral Range, FSR 
Figure 8.4 shows two successive orders for light having different wavenumbers,     and  
(  − Δ  ). Orders are separated by a change in     of 2π  The  m  1th   order of wavenumber  
   may overlap the  mth   order of (  − Δ.   i.e. changing the wavenumber by  Δ   moves a 
fringe to the position of the next order of the original wavenumber  .   

2d  m  1 and ( − Δ2d  m

∴ Δ2d  1
 

This wavenumber span is called the Free Spectral Range, FSR:  

d
FSR

2
1

=Δν       (8.12) 
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Figure 8.4 Fabry-Perot fringes for wavenumber ν   and  ν  - Δν   observed in centre-spot 
scanning mode. The mth -order fringe of ν   and ν  - Δν  appear at a slightly different values of 
the interferometer spacing d. When the wavenumber difference Δν   increases so that the mth  
order fringe of  ν  - Δν   overlaps the (m+1) th   order of  ν  the wavenumber difference equals 
the Free Spectral Range, FSR 
 
In figure 8.4 the different orders for each wavelength (wavenumber) are made visible by 
changing the plate separation d. (Because changing d will change δ). The phase δ can be varied 
by changing  d, λ  or θ.  See equation (8.5). In figure 8.3 the different orders for a given 
wavelength are made visible by the range of values of θ . If the source emits different 
wavelengths, fringes of the same order will appear with different radius on the screen. 
 
 



8.6 Resolving Power 
The instrumental width may now be expressed as: 

dFF
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Inst
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1
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Δ
=Δ

νν     (8.13) 

Two monochromatic spectral lines differing in wavenumber by  ΔR   are just resolved if their 
fringes are separated by the instrumental width:  ΔR  ΔInst   

. 
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Figure 8.5 Resolution criterion: light of  two wavenumbers  ,     − ΔR   is resolved when the 
eparation of fringes for     and   − ΔR   is equal to the instrument width  ΔInst   s 

As in Figure 8.4 the fringes of the same order for each spectral line separated in wavenumber by  
ΔR   could be recorded by varying d or θ. 
The Resolving Power is then given by:  


ΔR

 
ΔInst

 
Now    m/2d :  


ΔInst

 m
2d

2dF
1

 
Hence  

mFPR
R

=
Δ

=
ν
ν..      (8.14) 

 
Note,  F defines the effective number of interfering beams and m is the order of interference. 
Alternatively, F determines the maximum effective path difference:  

Maximum path difference  2dcos  F and 2dcos  m
 

So  

Maximum path difference


 mF
 

i.e. the Resolving Power is the number of wavelengths in the maximum path difference. 
 
 



8.7 Practical matters 
 
8.7.1 Designing a Fabry-Perot 
(a) FSR: The FSR is small so F.P.s are used mostly to determine small wavelength differences. 
Suppose a source emits spectral components of width  Δc   over a small range  ΔS  . We will 
require  ΔFSR  ΔS .   This determines the spacing  d  :  

1
2d

 ΔS   or  

S
d

νΔ
<

2
1  

(b) Finesse (Reflectivity of mirrors). This determines the sharpness of the fringes i.e. the 
instrument width. 
 
We require 

ΔInst ≲ Δc or ΔFSR
F ≲ Δc

 
Hence  

F ≥ 1
2dΔc

 
The required reflectivity  R is then found from  

)1( R
RF

−
=

π       (8.15) 

 
8.7.2 Centre spot scanning 
The pin-hole admitting the centre spot must be chosen to optimize resolution and light 
throughput. Too large and we lose resolution; too small and we waste light and reduce signal-to-
noise ratio. We need to calculate the radius of the first fringe away from the central fringe:  

cosm  m
2d

 
If mth fringe is the central fringe, θm = 0  and so 2 /m d λ=   The next fringe has angular radius:  

m−1  cos−1 1 − 
2d

 
The fringe radius in focal plane of lens of focal length  f:  

11 −− = mm fθρ  
 
8.7.3 Limitations on Finesse 
The sharpness of the fringes is affected if the plates are not perfectly flat. A “bump” of λ/10  in 
height is visited effectively 10 times if the reflectivity finesse is 10 and thus the path difference is 
altered by λ.  If the flatness is λ/x  it is therefore not worthwhile to make the reflectivity finesse >  
x/2.   
We assumed  T  1 − R   i.e. no absorption. In practice,  



R  T  A  1
 

where A is the absorption coefficient of the coatings. The coefficient in equation (8.2) modifies 
the transmitted intensity: 

T2

1 − R2  1 − R − A
1 − R

2
 1 − A

1 − R
2

 
Increasing  R → 100%  means  1 − R → A   and the coefficient in the Airy function:  

I0
T2

1 − R2
 0

 
i.e. the intensity transmitted to the fringes tends to zero. 



9. Reflection at dielectric surfaces and boundaries 
 
9.1 Electromagnetic waves at dielectric boundaries 
Maxwell's equations lead to a wave equation for electric and magnetic fields  E,H :  

∇2E  oror
∂2E
∂t2

 

∇2H  oror
∂2H
∂t2

 
Solutions are of the form:  

E  Eo exp it − k.r)
 

 From Maxwell's equations we also have:  

∇  E  −or
∂2H
∂t2

 
From which we find:  

E  2
or
or

H or E  1
n 2

o
o

H
 

where n is the refractive index of the medium and  
o

o

ε
μ

 is the impedance of free space. 
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Figure 9.1 Reflection of an electromagnetic wave incident normally from medium of refractive 
index n1  on a medium of index n2
 
Boundary conditions at the interface of two media of different refractive index  n1 and n2 demand 
that the perpendicular component of  D  is continuous and the tangential components of  E and  H 
are continuous. Incident and reflected field amplitudes are E1  and  respectively. '

1E

E1

E1
′  r  n2 − n1

n2  n1

 



The intensity reflection coefficient is therefore:  
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For an air/glass interface  R ~ 4%. 
 
 
9.2 Reflection properties of a single dielectric layer. 
Consider a wave incident from air, refractive index no , on a dielectric layer of index n1 deposited 
on a substrate of refractive index nT . See figure 9.2. Eo, Ho  are incident electric and magnetic 
wave amplitudes respectively in the air, and  the reflected amplitudes;  and  
are incident and reflected amplitudes in the dielectric layer and E

'' , oo HE 11 , HE '
1

'
1 , HE

T is the amplitude transmitted to 
substrate. 
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Figure 9.2 Reflected and transmitted waves for a wave incident normally from medium of 
index no on a dielectric layer on thickness l  and index n1 deposited on a substrate of index nT 
 
At boundary (a)  

′′ +=+ 11 EEEE oo      (9.2) 
′′ −=− 11 HHHH oo      (9.3) 

using  H  n 2
o
o

E :  
)()( 111
′′ −=− EEnEEn ooo     (9.4) 

 
At boundary (b), E1 has acquired a phase shift owing to propagating the thickness of the layer:  l
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Eliminating E1 and  from (9.2), (9.4), (9.5) and (9.6): '
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We find:  
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Now consider the case when 4/λ=l , a quarter-wave layer;  2/1 π=lk : 
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For  2/λ=l   a half-wave layer;  :1 π=lk  
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Note that for a half-wave layer the refractive index of the layer does not appear in the reflectivity 
and the result is the same as for an uncoated surface. (This effect is similar to that of a half-wave 
section of a transmission line.) 
 
An anti-reflection (AR) coating can be made i.e. one that minimizes the reflection by selecting a 
dielectric material such that  from equation (9.12). This requires 02

1 =− nnn To
2

1 Tonnn =  . For 
an air/glass boundary this is not possible, the closest we can do is to have n1 as low as possible 
e.g. MgF 2   has  n1 = 1.38 giving R ~ 1%.  Improved AR coatings are made using multiple layers. 
Coatings may also be made to enhance the reflectivity i.e high reflectance mirrors. 
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Figure 9.3 Anti-reflection dielectric coatings. A single  /4   layer can reduce reflection from 
4% to about 1%. Further reduction at specific wavelength regions is achieved by additional 
layers at the expense of increased reflectivity elsewhere. This enhanced reflection at the blue 
and red end of the visible is responsible for the purple-ish hue or blooming on camera or 
spectacle lenses. 
 
9.3 Multiple dielectric layers, Matrix Method. 
Write equations (9.7) and (9.8) in terms of r i.e. oo EE '  and t i.e. oT EE    

1  r  A  BnTt

no1 − r  C  DnTt
 

or in matrix form:  
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The characteristic matrix is  
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The characteristic matrix for a λ/4  layer of index nm  is  
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A stack of N layers has a characteristic matrix:  
 

NStack MMMMM .......321=      (9.17) 
 

 



Eo

Eo

.no .nT

ko

ko

n2.nH nL
n2.nH nL

Figure 9.4 Multiple quarter-wave stack 
 
9.4 High reflectance mirrors 
A stack of 2 dielectric layers of alternate high and low index nH, nL, respectively has the matrix:  
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For N such pairs the matrix is   . From this N

HLM 22×   matrix we find the values of  A, B, C and 
D.  Hence from equation (9.10) we find the reflectivity of the composite stack: 
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9.5 Interference Filters 
A Fabry-Perot etalon structure may be constructed from two high reflectance stacks separated by 
a layer that is λ/2 or an integer multiple of λ/2  The half-wave layer(s) acts as a spacer to 
determine the FSR. The FSR will therefore be very large such that only one transmission peak 
may lie in the visible region of the spectrum. This is an interference filter. 
Narrower range filters may be made by increasing the spacer distance and increasing the 
reflectance. Extra peaks may be eliminated using a broad band high or low pass filter. 
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Figure 9.5 Interference filter constructed using multiple dielectric layers consisting of two 
high-reflectance stacks separated by a λ/2 layer which acts as a spacer in the Fabry-Perot type 
interference device. The spacer may be made in integer multiples of  /2   to alter the FSR.  



10. Polarized light 
 
The polarization of light refers to the direction of the electric field vector E of the wave. There 
are three options for E: 
(1) its direction and amplitude remains fixed in space - linear polarization, 
(2) its direction rotates at angular frequency  ω about the direction of propagation and the 
amplitude remains constant - circular polarization 
(3) its direction rotates at angular frequency ω  and its amplitude varies between a maximum and 
minimum during each complete rotation - elliptical polarization. 
For propagation in the x- direction the vector E may be resolved into two orthogonal components 
Ey and Ez.  Each of the three polarization states is thus characterised by a fixed phase relationship 
between these components. If the phase is randomly varying the light is said to be unpolarized. 
 
10.1 Polarization states 
An electromagnetic wave travelling in the positive x direction has an electric field E with 
components Ey and Ez. 
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where δ  is a relative phase. The light is polarized when δ is a constant. 
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Figure 10.1 Electric field vector in light wave has components Eoz  and Eoy  in plane 
orthogonal to propagation direction along x-axis 
 
Case 1: Linearly polarized light, δ = 0 
  The components are in phase. The resultant is a vector EP : 

 
)cos(}{ tkxEE ozoyP ω−+= kjE     (10.2) 

at a fixed angle α  to the y-axis  
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Case 2: Circularly polarized light,  2/πδ ±=  
  Consider 2/πδ −=  and oozoy EEE ==   
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Figure 10.2 Circularly polarized light propagating in the positive x-direction. 
 
The tip of the  E-vector rotates at angular frequency ω at any position x on the axis, and rotates 
by 2π  for every distance λ  along the  x-axis. What is the direction of rotation? 
Consider position  and time t = 0. oxx =

Ey  Eo coskx 0

Ez  Eo sinkx 0
 

The vector is at some angle α. 
At position  and timeoxx = ω/okxt = : 

Ey  Eo

Ez  0
 

The E-vector has rotated clockwise as viewed back towards the source.  See figure 10.3. This is 
Right Circularly Polarized light (δ = −π/2). Right circularly polarized light advances like a Left-
handed screw! 
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Figure 10.3 Direction of circular polarization is determined by looking back towards the 
source. (a) and (b) show E-vector at a point  x = xo  at time t = 0,  and a later time ω/okxt = .  
In this case the E-vector has rotated clockwise and is denoted Right Circularly Polarized. 
 
Conversely, 2/πδ +=  is Left Circularly Polarized light: viewed towards the source the E-vector 
rotates anti-clockwise. Thus the E-vector for right and left circular polarization is written: 
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Note that a linear superposition of ER and EL and gives linear or plane polarized light.  
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Figure 10.4 Plane polarized light is a superposition of a right- and a left-circularly polarized 
component. 
 
 
 
 
 



If the components are of unequal amplitude then the resultant traces out an ellipse i.e the light is 
elliptically polarized.   
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igure 10.5 A superposition of right- and left-circularly polarized components of unequal 

ase 3: Elliptically polarized light.
 between y and z components. From (10.1):  

F
magnitude gives elliptically polarized light. 
 
C
  In general there is a relative phase δ 

Ey  Eoy coskx − t

Ez  Eoz coskx − t − 
 

Writing  
]sin)sin(cos)[cos( δωδω tkxtkxEE ozz −−−=    (10.8) 

Substitute in (10.8) using  

coskx − t 
Ey

Eoy
, and sinkx − t  1 −

Ey

Eoy

2 1/2

 
we obtain:  
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o for 2/πδ ±=  S
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     (10.10) 

This is the equation for an ellipse with  Eoy , Eoz   as the major/minor axes, i.e. the ellipse is 
es. disposed symmetrically about the y / z ax

For 2/πδ ±=  the axes of symmetry of the ellipse are rotated relative to the y / z axes by an 
 θ angle

δθ cos22tan 22
ozoy

ozoy

EE
EE

−
=      (10.11) 
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(a)                                                      (b)  
Figure 10.6 Elliptically polarized light (a) axes aligned with y, z  axes, (b) with axes at angle θ  

s δ varies from

relative to y,z  axes. 
 

 π20 →A  the polarization varies from linear to elliptical and back to linear. Thus 
 the stawe may transform te of polarization between linear and elliptical or vice-versa by altering 

the relative phase of the two components. This can be done using a material that has different 
refractive index for two different directions of polarization i.e. a birefringent material. 
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igure 10.7 General elliptical state of polarization for different values of relative phase δ 

0.2 Optics of anisotropic media; birefringence. 
 the syllabus, but is 

ed by how the 

F
between the components. 
 
1
Firstly; some background information that is not required for
interesting/useful to know about. The optical properties of a material are determin
electric field D inside the medium is related to an electric field E incident “from outside”.  

D  orE
 

rεThe permittivity  is a tensor so the components of D are related to the components of E by: 

    (10.12) 

 
The permittivity 
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rε  of the medium is equal to the square of the refractive index, n2  [Note that the 
permittivity tensor matrix has been diagonalized here for simplicity i.e. we have chosen to 
represent it by components YX εε ,  and Zε  specifying its value along the axes of symmetry.
An isotropic medium is repr d by  

] 
esente



X  Y  Z  n2
 

A particular type of anisotropic medium is represented by  

X  Y ≠ Z
 

Hence there are, in this type of material, different values of refractive index for light with its E 
vectors along different axes:  

nX
2  nY

2 ≠ nZ
2

 
Now begins the stuff you need to know! 

e will be concerned only with uniaxial, anisotropic materials i.e. crystals that have two 
a 

 
W
characteristic values of refractive index i.e. birefringent. We identify 3 orthogonal axes in 
crystal: x, y and z. If a ray of light is polarized such that the E-vector lies in the xy-plane it 
experiences a refractive index no.  [i.e. oYX nnn == ] . Note that the ray may propagate in a
direction and, provided its E-vector lies ane, it will “see” the refractive index n

ny 
 in the  x,y-pl

pagates in the x,y-plane) it 

 

ptic 

o.  
Such a ray is called an ordinary ray or o-ray.  no is the ordinary index. 
If the ray is polarized with the E-vector parallel to the z-axis (i.e. it pro
experiences a refractive index ne, the extra-ordinary index and is the extraordinary ray or e-ray. 
Note that if a ray propagates along the z-axis, its E-vector must lie in the  x,y-plane and it will be
an  o-ray. In this case the direction of the E-vector, i.e. its polarization direction, makes no 
difference to the refractive index. Thus the z-axis is the axis of symmetry and is called the O
Axis. This is the only axis of symmetry and the crystal is uniaxial.
 

ne  no positive uniaxial ne  no negative uniaxial
 

z z

x,y x,y

nex
nexno

no

(a)                         (b)  
Figure 10.8 (a) positive and (b) negative uniaxial birefring nt crystals. 

The difference in refractive indices characterizes the degree of birefringence.  

e
 

Δn  |no − ne |
 

The wave front of an  o-ray is spherical whereas the wave front of an  e-ray is elliptical.   



10.3 Production and manipulation of polarized light 
At the end of section 10.1 it was noted that the polarization state of a wave may be modified by 
changing the phase factor δ. This can be done using a crystal cut with parallel faces normal to the  
x-axis i.e. such that the y,z- plane lies in the faces. A linearly polarized wave travelling in the  x-
direction in general will have components Ey, Ez  along y, z axes which experience refractive 
indices no and ne respectively. After traversing a length of the crystal a relative phase shift 
between the two components will be introduced:  

l

 

leo nn −=
λ
πδ 2      (10.14) 

 
For a given birefringent material the value of δ  will be determined by the length .  l
 

Input polarization: Ey, Ez in phase: Linear 
Output polarization: δ − phase shift: Elliptical 
 

The form of elliptical polarization created from a linearly polarized input depends on the value of  
δ and angle θ of input polarization direction relative to the optic axis (z-axis) 
 

   45o    ( Ey  Ez        
2   (Quarter-wave, λ / 4  plate)  Right/Left Circular 

  ≠ 45o    ( Ey ≠ Ez        
2   (Quarter-wave,  λ / 4  plate)  Right/Left Elliptical 

  ≠ 45o    ( Ey ≠ Ez          (Half-wave,  λ / 2  plate)         Linear, plane rotated by 2θ 
 
Note: a quarter-wave plate may be used to convert linear to elliptical or vice versa. 
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Figure 10.9 Action of a λ/2-plate with axis at θ  to E-vector of plane polarized light shifts 
phase of one component; Ey  by π  relative to original phase resulting in a rotation by 2θ  of 
the resultant E-vector.  
 
Polarized light may be produced from unpolarized light using: 
(a) Fresnel reflection at Brewster's angle. 
(b) “Polaroid-type” material: absorbs one component. 
(c) Birefringent prism: o-rays and  e-rays have different refractive indices so different angle of 
refraction and different critical angles θc  . Prism may be cut so that beam strikes angled face at 
incidence angle θi  where ci θθ >  for o-ray and ci θθ <  for e-ray (or vice versa.) Deviation may 
be compensated by use of a second prism. 
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e-ray

o-ray
o-ray o-rayOptic axis Optic axis

 
Figure 10.10 Prism polarizers
                                        
Variable phase shifts may be introduced using a compensator. The Babinet compensator has two 
wedged plates A and B with orthogonal optic axes. The phase shift in each prism depends on the 
position across the wedge. ( ) 1./2 dnA Δ= λπδ   and  ( ) 2../2 dnB Δ= λπδ . A net phase shift δ is 
introduced:  

)()/2( 21 ddn −Δ= λπδ     (10.15) 
 
The phase shift introduced varies across the aperture. 
The Babinet-Soleil produces a variable phase shift that is constant across the aperture.   

d1

d2

d1

d2

(a) (b)  
 

Figure 10.11 (a) Babinet compensator; phase shift introduced to transmitted beam varies 
across the aperture according to the value of 21 dd −  (b) Babinet-Soliel compensator; phase 
shift is constant across the aperture as d2  is varied by position of wedge. 
 
10.4 Analysis of polarized light 
The general state of light polarization is elliptical. Linear and circular polarizations are special 
cases of elliptical; 0=δ   and 2πδ ±=  (with  Eoy = Eoz = Eo) respectively. Linear polarization is 
also a linear superposition of right and left circularly polarized components of equal amplitude. 
The state of polarization is specified by two parameters: the ratio of  Eoy / Eoz, or tanα,  and the 
phase angle δ. (see figure 10.6) The following two methods may be used to specify the state by 
determination of these parameters. 
 
(a) Using a Babinet-Soleil, B-S, compensator and a linear polarizer.
If the axis of the B-S is aligned along one component the device may be adjusted to insert a phase 
shift δ in the other to convert the light to linear polarization. This linear polarization may be 
extinguished by a crossed, linear polarizer i.e. an analyzer. The B-S is rotated until a position is 



found where adjustment of δ  leads to light that can be totally extinguished by the analyzer. Note 
that rotating the linear polarizer without the B-S in position will indicate approximately the 
orientation of the major and minor axes of the ellipse. The B-S may then be inserted in 
approximately the correct orientation and both the B-S and the analyzer are adjusted to obtain 
extinction in a process of iteration. 
 
(b) Using a λ/4-plate and a linear polarizer.
(i) Rotate linear polarizer to determine approximately the orientation of the major/minor axes of 
ellipse; the angle obtaining maximum and minimum transmission. 
(ii) Set linear polarizer for maximum transmission. Remember that if the coordinate axes are 
chosen to coincide with the principal axes of the ellipse there is a phase difference 2/πδ ±=  
between the components. 
(iii) Insert  λ/4--plate before the linear polarizer. (The axes of the  λ/4--plate will be known.) 
Align axis of  λ/4--plate with approximate ellipse axis. If it is exactly along the axis then linearly 
polarized light will result. 
(iv) Rotate linear polarizer to check for complete extinction. 
(v) Iterate orientation of  λ/4--plate and linear polarizer to obtain total extinction.  λ/4--plate is 
now at angle θ  to reference axes. The position of total extinction specifies the orientation of the 
linearly polarized E-vector. The angle between this vector and the axis of the  λ/4--plate is α.  
The ratio of the E-vector components is tanα. 
Thus the ratio Eoy/Eoz  and the orientation of the ellipse is determined (relative to the axes y’, z’ at 
this orientation 2/πδ ±= ). 
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/4 plateλ

Elliptically polarized light
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(a)                                                 (b)  
Figure 10.12 (a) Elliptically polarized light with axes at arbitrary angle. (b) Linearly polarized 
light produced from (a) using  λ/4- plate aligned with  y’, z’  axes. Ellipticity is found from 
tanα. 
 
Any given state of elliptically polarized light may be converted to any desired state of elliptical 
polarization using a sequence of  λ/4--plate,  λ/2--plate,  λ/4--plate. 
First  λ/4--plate is adjusted to give linear polarization at angle set by original elliptical axes. 
Axis of  λ/2-plate set at θ  relative to E-vector to rotate it by 2θ  (θ  is chosen to produce the 
desired orientation of linear polarized light). 
Second  λ/4--plate is rotated relative to E-vector of the linearly polarized light to achieve desired 
elliptical polarization. 



 
10.5 Interference of polarized light.   
(a) Orthogonally polarized waves do not interfere. The basic idea of wave interference is that 
waves interfere with themselves not with each other. A dipole source of electromagnetic waves, 
say an emitting atom, cannot emit simultaneously two orthogonally polarized waves. Thus two 
orthogonally polarized waves cannot have come from the same source and so cannot interfere. A 
source e.g. an atom may emit a linearly polarized wave that may be resolved into two orthogonal 
components. These components may interfere if their planes of polarization are made to be the 
same e.g. if one component is rotated by a  λ/2 -plate to be parallel to the other. The two 
components are in-phase i.e. coherent. 
 
(b) Unpolarized light has randomly varying plane of polarization. Interference occurs, for 
example in a Michelson, because each wave train (photon!) is split into a pair at the beam splitter. 
Each one of the pair has orthogonal components say  Eoy and  Eoz. The y-component of one of the 
pair interferes with the  y-component of the other one of the pair. Likewise the  z-components of 
the split wave interfere to give the composite interference pattern. Thus emission from 
uncorrelated atoms emitting uncorrelated randomly polarized wave trains still produces an 
interference pattern. 
 

A B

(a)

A
B
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(b)

A
B

C D

(c).  
Figure 10.13 Interference of polarized light in a two-beam (Michelson) interferometer A and B 
are linear polarizers i.e. pass only light polarized in directions shown. Unpolarized light from 
the source is split at the beam splitter.
(a) Light in paths A and B are orthogonally polarized; no interference.  
(b) Linear Polarizer C at 45o produces phase-correlated components passed by A and B. The 
components are however orthogonally polarized and so no interference is produced.  
(c) Linear polarizer D at 45o  transmitts phase correlated components from polarizer C that are 
parallel and so interference is produced. 
 



It is worth noting that unpolarized light can not be fully coherent and so cannot be perfectly 
monochromatic. Random variation in the plane of polarization results in a random variation of 
the amplitude along a given axis in space e.g. the  y-axis. This is essentially an amplitude 
modulated wave and so must contain Fourier components i.e. other frequencies. Unpolarized 
light is therefore not purely monochromatic or fully coherent. 
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