Atomic Physics

3rd year B1

P. Ewart
• Lecture notes

• Lecture slides

• Problem sets

All available on Physics web site:

http://www.physics.ox.ac.uk/users/ewart/index.htm
Atomic Physics:
• Astrophysics
• Plasma Physics
• Condensed Matter
• Atmospheric Physics
• Chemistry
• Biology

Technology
• Street lamps
• Lasers
• Magnetic Resonance Imaging
• Atomic Clocks
• Satellite navigation: GPS
• etc
Astrophysics
Condensed Matter

Zircon mineral crystal

C_{60} Fullerene
Snow crystal
Lasers
Biology

DNA strand
Lecture 1

• How we study atoms:
 – emission and absorption of light
 – spectral lines
• Atomic orders of magnitude
• Basic structure of atoms
 – approximate electric field inside atoms
Atomic radiation

\[\psi_1 \quad \psi_2 \]

Oscillating charge: Electric dipole

Atomic radiation
Spectral Line Broadening

Homogeneous e.g.
- Lifetime (Natural)
- Collisional (Pressure)

Inhomogeneous e.g.
- Doppler (Atomic motion)
- Crystal Fields
Lifetime (natural) broadening

- Number of excited atoms: $N(t)$, $E(t)$
- Intensity spectrum: $I(\omega)$

- Time, t (Exponential decay)
- Frequency, ω (Lorentzian lineshape)

Fourier Transform
Lifetime (natural) broadening

Number of excited atoms

Electric field amplitude

$N(t)$

$E(t)$

Time, t

Exponential decay

$\tau \sim 10^{-8}$s

Intensity spectrum

$I(\omega)$

Frequency, ω

Lorentzian lineshape

$\Delta \nu \sim 10^8$ Hz

Oxford Physics: 3rd Year, Atomic Physics
Collision (pressure) broadening

Number of uncollided atoms

$N(t)$

Time, t

Exponential decay

Intensity spectrum

$I(\omega)$

Frequency, ω

Lorentzian lineshape
Collision (pressure) broadening

Number of uncollided atoms

\[N(t) \]

Time, \(t \)

Exponential decay

Intensity spectrum

\[I(\omega) \]

Frequency, \(\omega \)

Lorentzian lineshape

\[\tau_c \sim 10^{-10} \text{s} \]

\[\Delta \nu \sim 10^{10} \text{Hz} \]
Doppler (atomic motion) broadening

Distribution of atomic speed

\[N(v) \]

Doppler broadening

\[I(\omega) \]

atomic speed, \(v \)

gaussian lineshape

Maxwell-Boltzmann distribution

frequency, \(\omega \)

Typical \(\Delta v \sim 10^9 \text{ Hz} \)
Atomic orders of magnitude

Atomic energy: \(10^{-19} \text{ J} \rightarrow \sim 2 \text{ eV}\)

Thermal energy: \(\frac{1}{40} \text{ eV}\)

Ionization energy, H: \(13.6 \text{ eV}\)

\(= \text{Rydberg Constant} \quad 109,737 \text{ cm}^{-1}\)

Atomic size, Bohr radius: \(5.3 \times 10^{-11} \text{ m}\)

Fine structure constant, \(\alpha = \frac{v}{c} \approx 1/137\)

Bohr magneton, \(\mu_B\): \(9.27 \times 10^{-24} \text{ JT}^{-1}\)
The Central Field

U(r)

1/r

~Z/r

“Actual” Potential

Oxford Physics: 3rd Year, Atomic Physics
Z_{eff} vs r plot.

Important region

Radial position, r
Lecture 2

• The Central Field Approximation:
 – physics of wave functions (Hydrogen)

• Many-electron atoms
 – atomic structures and the Periodic Table

• Energy levels
 – deviations from hydrogen-like energy levels
 – finding the energy levels; the quantum defect
Schrödinger Equation (1-electron atom)

\[
-H = -\frac{\hbar^2}{2m} \nabla^2 \psi - \frac{Ze^2}{4\pi \epsilon_0 r} \psi = E \psi
\]

Hamiltonian for many-electron atom:

\[
\hat{H} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi \epsilon_0 r_i} \right) + \sum_{i>j} \frac{e^2}{4\pi \epsilon_0 r_{ij}}
\]

- Individual electron potential in field of nucleus
- Electron-electron interaction

This prevents separation into Individual electron equations
Central potential in Hydrogen:

\[V(r) \sim 1/r, \]

separation of \(\psi \) into radial and angular functions:

\[\psi = R(r) Y^m_l(\theta, \phi) \chi(m_s) \]

Therefore we seek a potential for multi-electron atom that allows separation into individual electron wave-functions of this form.
Electron – Electron interaction term:

\[\sum_{i>j} \frac{e^2}{4\pi\varepsilon_0 r_{ij}} \]

Treat this as composed of two contributions:
(a) a centrally directed part
(b) a non-central *Residual Electrostatic* part

![Diagram of electron-electron interaction](image)
Hamiltonian for Central Field Approximation

\[\hat{H} = \hat{H}_0 + \hat{H}_1 \]

where \[\hat{H}_0 = \sum_i \left\{ -\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right\} \]

\[\hat{H}_1 = \text{residual electrostatic interaction} \]

Perturbation Theory Approximation:

\[\hat{H}_1 \ll \hat{H}_0 \]
Zero order Schrödinger Equation:

$$\hat{H}_0 \psi = E_0 \psi$$

\hat{H}_0 is spherically symmetric so equation is separable - solution for individual electrons:

$$\psi(n, l, m_l, m_s) = R'_{n,l}(r) Y_l^m(\theta, \phi) \chi(m_s)$$

Radial Angular Spin
Central Field Approximation:

\[\hat{H} = \hat{H}_0 + \hat{H}_1 \]

where \(\hat{H}_0 = \sum_i \left\{ -\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right\} \)

What form does \(U(r_i) \) take?
$U(r) \sim \frac{1}{r}$

$U(r) \sim \frac{Z}{r}$
The Central Field

\[U(r) \]

- \(\frac{1}{r} \)
- \(\sim \frac{Z}{r} \)
- "Actual" Potential
Radial position, r

Z_{eff} vs. r

$\sim Z$

Important region

1
Finding the Central Field

• “Guess” form of U(r)
• Solve Schrödinger eqn. → Approx ψ.
• Use approx ψ to find charge distribution
• Calculate $U_c(r)$ from this charge distribution
• Compare $U_c(r)$ with U(r)
• Iterate until $U_c(r) = U(r)$
Energy eigenvalues for Hydrogen:

\[E_n = \langle \psi_{n,l,m_l} | \hat{H} | \psi_{n,l,m_l} \rangle = -\frac{Z^2 \, me^4}{(4\pi \epsilon_0)^2 \, 2\hbar^2 n^2} \]
H Energy level diagram

Energy

\[E_n = \left\langle \psi_{n,l,m_l} | \hat{H} | \psi_{n,l,m_l} \right\rangle \]
\[= -\frac{Z^2me^4}{(4\pi\varepsilon_0)^2} \frac{1}{2\hbar^2 n^2} \]

Note degeneracy in \(l \)

-13.6 eV
Revision of Hydrogen solutions:

Product wavefunction:
Spatial x Angular function

\[\psi_{n,l,m_l}(r, \theta, \phi) = R_{n,l}(r)Y_{l}^{m_l}(\theta, \phi) \]

Normalization

\[\int R_{n,l}^2(r)r^2 dr = 1 \quad \int |Y_{l}^{m_l}(\theta, \phi)|^2 d\Omega = 1 \]

\[Y_{l}^{m_l}(\theta, \phi): \text{ Eigenfunctions of angular momentum operators} \]

\[\hat{l}^2 Y_{l}^{m_l}(\theta, \phi) = l(l+1)\hbar^2 Y_{l}^{m_l}(\theta, \phi) \]
\[\hat{l}_z Y_{l}^{m_l}(\theta, \phi) = m_l\hbar Y_{l}^{m_l}(\theta, \phi) \]

Eigenvalues

\[l = 0, 1, 2... (n-1) \quad -l \leq m_l \leq l \]

Oxford Physics: 3rd Year, Atomic Physics
Angular momentum orbitals

\[|Y_{1}^{\pm}(\theta,\phi)|^2 \]
Angular momentum orbitals

Spherically symmetric charge cloud with filled shell

$| Y_{1}^{\pm} (\theta, \phi) |$

$| Y_{1}^{0} (\theta, \phi) |^2$
Radial wavefunctions

Ground state, \(n = 1, l = 0 \)

1st excited state, \(n = 2, l = 0 \)
\(N = 2, l = 1 \)

2nd excited state, \(n = 3, l = 0 \)
\(n = 3, l = 1 \)
\(n = 3, l = 2 \)
Radial wavefunctions

- \(l = 0 \) states do not vanish at \(r = 0 \)
- \(l \neq 0 \) states vanish at \(r = 0 \), and peak at larger \(r \) as \(l \) increases
- Peak probability (size) \(\sim n^2 \)
- \(l = 0 \) wavefunction has \((n-1) \) nodes
- \(l = 1 \) has \((n-2) \) nodes etc.
- Maximum \(l = (n-1) \) has no nodes

Electrons arranged in “shells” for each \(n \)
The Periodic Table

Shells specified by n and l quantum numbers

<table>
<thead>
<tr>
<th>Element</th>
<th>1s</th>
<th>2s</th>
<th>2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>1s2</td>
<td>2s</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>1s2</td>
<td>2s2</td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>1s2</td>
<td>2s22p</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1s2</td>
<td>2s22p2</td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>1s2</td>
<td>2s22p6</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>1s2</td>
<td>2s22p6</td>
<td>3s</td>
</tr>
</tbody>
</table>

Electron configuration
The Periodic Table

<table>
<thead>
<tr>
<th>Element</th>
<th>Electron Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1s(^2)2s(^2)2p(^6) 3s(^2)3p(^6) 4s</td>
</tr>
<tr>
<td>Ca</td>
<td>4s(^2)</td>
</tr>
<tr>
<td>Va</td>
<td>3s(^2)3p(^6) 3d(^3)4s(^2)</td>
</tr>
<tr>
<td>Cr</td>
<td>3d(^5)4s</td>
</tr>
<tr>
<td>Mn</td>
<td>3d(^5)4s(^2)</td>
</tr>
</tbody>
</table>
The Periodic Table

Rare gases

<table>
<thead>
<tr>
<th>Element</th>
<th>Electron Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1s(^2)</td>
</tr>
<tr>
<td>Ne</td>
<td>1s(^2)2s(^2)2p(^6)</td>
</tr>
<tr>
<td>Ar</td>
<td>1s(^2)2s(^2)2p(^6)3s(^2)3p(^6)</td>
</tr>
<tr>
<td>Kr</td>
<td>(….) 4s(^2)4p(^6)</td>
</tr>
<tr>
<td>Xe</td>
<td>(…..)5s(^2)5p(^6)</td>
</tr>
<tr>
<td>Rn</td>
<td>(…….)6s(^2)6p(^6)</td>
</tr>
</tbody>
</table>
The Periodic Table

Alkali metals

Li: $1s^22s$
Na: $1s^22s^22p^63s$
Ca: $1s^22s^22p^63s^23p^64s$
Rb: $(...) 4s^24p^65s$
Cs: $(.....)5s^25p^66s$
etc.
Absorption spectroscopy

White light source -> Atomic Vapour -> Spectrograph

Absorption spectrum
Finding the Energy Levels

Hydrogen Binding Energy, Term Value

\[T_n = \frac{R}{n^2} \]

Many electron atom,

\[T_n = \frac{R}{(n - \delta(l))^2} \]

\(\delta(l) \) is the Quantum Defect
Finding the Quantum Defect

1. Measure wavelength λ of absorption lines
2. Calculate: $\bar{\nu} = 1/\lambda$
3. "Guess" ionization potential, $T(n_0)$ i.e. Series Limit
4. Calculate $T(n_i)$:
 $$\bar{\nu}_i = T(n_0) - T(n_i)$$
5. Calculate: n^* or $\delta(l)$
 $$T(n_i) = R \ell(n - \delta(l))^2$$

Quantum defect plot

$\Delta(l)$

$T(n_i)$
Lecture 3

• Corrections to the Central Field
• Spin-Orbit interaction
• The physics of magnetic interactions
• Finding the S-O energy – Perturbation Theory
• The problem of degeneracy
• The Vector Model (DPT made easy)
• Calculating the Spin-Orbit energy
• Spin-Orbit splitting in Sodium as example
The Central Field

\[U(r) \]

1/r

\[\sim Z/r \]

“Actual” Potential
Corrections to the Central Field

- Residual electrostatic interaction:

\[\hat{H}_1 = \sum_{i > j} \frac{e^2}{4\pi \varepsilon_0 r_{ij}} - \sum_i \left\{ \frac{Ze^2}{4\pi \varepsilon_0 r_i} + U(r_i) \right\} \]

- Magnetic spin-orbit interaction:

\[\hat{H}_2 = -\mu \cdot B_{\text{orbit}} \]
Magnetic spin-orbit interaction

- Electron moves in Electric field of nucleus, so sees a Magnetic field B_{orbit}
- Electron spin precesses in B_{orbit} with energy:
 \[-\mu \cdot B \text{ which is proportional to } s \cdot l\]
- Different orientations of s and l give different total angular momentum $j = l + s$.
- Different values of j give different $s \cdot l$ so have different energy:
 The energy level is split for $l \pm 1/2$
Larmor Precession

Magnetic field B exerts a torque on magnetic moment μ causing precession of μ and the associated angular momentum vector λ

The additional angular velocity ω' changes the angular velocity and hence energy of the orbiting/spinning charge

$$\Delta E = -\mu \cdot B$$
Spin-Orbit interaction: Summary

\[
\mathbf{B} = -\frac{\mathbf{v} \times \mathbf{E}}{c^2}
\]

\[
\mathbf{B} = -\frac{1}{m c^2} \mathbf{p} \times \frac{\mathbf{E}}{|r|}
\]

\[
\mathbf{B} = \frac{1}{m c^2} \frac{|\mathbf{E}|}{|r|} \mathbf{l}
\]

\[
|\mathbf{E}| = -\frac{\partial \phi(r)}{\partial r}
\]

\[
|\mathbf{E}| = -\frac{1}{e} \frac{\partial U(r)}{\partial r}
\]

\[
\mathbf{B} = \frac{1}{e m c^2} \frac{1}{|r|} \frac{\partial U(r)}{\partial r} \mathbf{l}
\]

\[
\mathbf{B} \parallel \mathbf{l}
\]

\[
\mu_s = -g_s \frac{\mu_B}{\hbar} \hat{s}
\]

\[
\mu \parallel \hat{s}
\]

\[
-\mu_s \cdot \mathbf{B} \propto \frac{1}{r} \frac{\partial U(r)}{\partial r} \hat{s} \cdot \mathbf{l}
\]

Oxford Physics: 3rd Year, Atomic Physics
How to find $\langle \hat{s} \cdot \hat{l} \rangle$ using perturbation theory?

Perturbation energy

$$- \mu_s \cdot B = \frac{\mu_0}{4\pi} Z g_s \mu_B^2 \frac{1}{r^3} \frac{\hat{s} \cdot \hat{l}}{\hbar^3}$$

Radial integral

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{Z^3}{n^3 a_0^3 l(l + 1/2)(l + 1)}$$

Angular momentum operator

$$\hat{s} \cdot \hat{l} = ?$$
Perturbation theory with degenerate states

Perturbation Energy:
\[\Delta E = \langle \psi_i | \hat{H}' | \psi_i \rangle \]

Change in wavefunction:
So won’t work if \(E_i = E_j \)
i.e. degenerate states.

We need a diagonal perturbation matrix,
i.e. off-diagonal elements are zero
\[\langle \psi_1 | \hat{H}' | \psi_2 \rangle = 0 \]
\[\langle \phi_1 | \hat{H}' | \phi_2 \rangle = 0 \]

New wavefunctions:
\[\phi_1 = a \psi_1 + b \psi_2 \]
\[\phi_2 = b^* \psi_1 - a^* \psi_2 \]

New eigenvalues:
\[\Delta E_1 = \langle \phi_1 | \hat{H}' | \phi_1 \rangle, \quad \Delta E_2 = \langle \phi_2 | \hat{H}' | \phi_2 \rangle \]
The Vector Model

Angular momenta represented by vectors:
\(l^2, s^2 \) and \(j^2 \), and \(l, s, j \) and with magnitudes:
\(l(l+1), s(s+1) \) and \(j(j+1) \) and
\(\sqrt{l(l+1)}, \sqrt{s(s+1)} \) and \(\sqrt{j(j+1)} \).

Projections of vectors:
\(l, s \) and \(j \) on z-axis
are \(m_l, m_s \) and \(m_j \).

Constants of the Motion → Good quantum numbers
Summary of Lecture 3: Spin-Orbit coupling

• Spin-Orbit energy

\[- \mu_s \cdot B \propto \frac{1}{r} \frac{\partial U(r)}{\partial r} \hat{s} \cdot \hat{l} \]

• Radial integral sets size of the effect.

\[\left\langle \frac{1}{r^3} \right\rangle = \frac{Z^3}{n^3 a_0^3 l (l + 1/2)(l + 1)} \]

• Angular integral \(\langle s \cdot l \rangle \) needs Degenerate Perturbation Theory

• New basis eigenfunctions:

\[\langle n, l, s, j, m_j \rangle \]

• \(j \) and \(j_z \) are constants of the motion

• Vector Model represents angular momenta as vectors
• These vectors can help identify constants of the motion
• These constants of the motion - represented by good quantum numbers
(a) No spin-orbit coupling
(b) Spin–orbit coupling gives precession around j
(c) Projection of l on z is not constant
(d) Projection of s on z is not constant

m_l and m_s are not good quantum numbers
Replace by j and m_j
Vector model defines:

\[
\hat{j}^2 = (\hat{l} + \hat{s})^2 \quad \hat{j}_z = \hat{l}_z + \hat{s}_z
\]

Vector triangle

\[
\hat{s} \cdot \hat{l} = \frac{1}{2} \left(\hat{j}^2 - \hat{l}^2 - \hat{s}^2 \right)
\]

Magnitudes

\[
j(j + 1) \quad l(l + 1) \quad s(s + 1)
\]

\[
\langle n, l, s, j, m_j | \hat{s} \cdot \hat{l} | n, l, s, j', m_j' \rangle = 0 \quad \text{unless } j = j' \text{ and } m_j = m_j'
\]

\[
\langle n, l, s, j, m_j | \hat{s} \cdot \hat{l} | n, l, s, j, m_j \rangle = \frac{1}{2} \left\{ j(j + 1) - l(l + 1) - s(s + 1) \right\} \hbar^2
\]
Using basis states: $| n, l, s, j, m_j \rangle$ to find expectation value:

The spin-orbit energy is:

$$\Delta E = \beta_{n,l} \times (1/2) \{ j(j+1) - l(l+1) - s(s+1) \}$$
\[\Delta E = \beta_{n,l} \times \left(\frac{1}{2} \right) \{ j(j+1) - l(l+1) - s(s+1) \} \]

Sodium

3s: \(n = 3, \ l = 0 \), no effect

3p: \(n = 3, \ l = 1 \), \(s = \frac{1}{2}, \ -\frac{1}{2} \), \(j = \frac{1}{2} \) or \(^3/2 \)

\[\Delta E(\frac{1}{2}) = \beta_{3p} \times (-1); \quad \Delta E(\frac{3}{2}) = \beta_{3p} \times \left(\frac{1}{2} \right) \]

3p (no spin-orbit)

\[2j + 1 = 4 \quad \text{and} \quad 2j + 1 = 2 \]

\[j = 3/2 \quad \text{and} \quad j = 1/2 \]

1/2 \quad and \quad -1
Lecture 4

- Two-electron atoms: the residual electrostatic interaction
- Adding angular momenta: LS-coupling
- Symmetry and indistinguishability
- Orbital effects on electrostatic interaction
- Spin-orbit effects
Coupling of l_i and s to form L and S:

Electrostatic interaction dominates

\[L = l_1 + l_2 \]
\[S = s_1 + s_2 \]
Coupling of L and S to form J

$S = 1$

$L = 1$

$J = 2$

$L = 1$

$J = 1$

$L = 1$

$S = 1$

$J = 0$
Magnesium: “typical” 2-electron atom

Mg Configuration:
1s^2 2s^2 2p^6 3s^2

Na Configuration:
1s^2 2s^2 2p^6 3s

“Spectator” electron in Mg

Mg energy level structure is like Na but levels are more strongly bound
Residual electrostatic interaction

\[\hat{H}_1 = -\sum_i \frac{Ze^2}{4\pi\epsilon_0 r_i} + \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}} - \sum_i U(r_i) \]

3s4s state in Mg:
Zero-order wave functions

Perturbation energy:

\[\Delta E_1 \neq \langle \psi_1(3s)\psi_2(4s) | \hat{H}_1 | \psi_1(3s)\psi_2(4s) \rangle \]

Degenerate states
Linear combination of zero-order wave-functions

\[\phi_1 = \frac{1}{\sqrt{2}} (\psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s)) \]
\[\phi_2 = \frac{1}{\sqrt{2}} (\psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s)) \]

Off-diagonal matrix elements:

\[\frac{1}{2} \langle \psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s) \rangle \]

\[1\uparrow \quad 2\uparrow \quad 3\uparrow \quad 4\uparrow \]
Off-diagonal matrix elements:

\[\frac{1}{2} \left(\langle \psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s) \rangle \right) \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\uparrow & \uparrow & \uparrow & \uparrow \\
1 \times 3 & = & \langle \psi_1(3s)\psi_2(4s) | V | \psi_1(3s)\psi_2(4s) \rangle & = & J \\
2 \times 4 & = & -\langle \psi_1(4s)\psi_2(3s) | V | \psi_1(4s)\psi_2(3s) \rangle & = & -J \\
2 \times 3 & = & \langle \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) \rangle & = & K \\
1 \times 4 & = & -\langle \psi_1(3s)\psi_2(4s) | V | \psi_1(4s)\psi_2(3s) \rangle & = & -K \\
\end{array} \]

Therefore \[\langle \phi_1 | V | \phi_2 \rangle = 0 \] as required!
Effect of Direct and Exchange integrals

Energy level with no electrostatic interaction

Singlet

Triplet

+K

-K

J
Orbital orientation effect on electrostatic interaction

Overlap of electron wavefunctions depends on orientation of orbital angular momentum: so electrostatic interaction depends on \mathbf{L}
Residual Electrostatic and Spin-Orbit effects in LS-coupling
Term diagram of Magnesium

Singlet terms

\[^1S_0 \quad ^1P_1 \quad ^1D_2 \]

Triplet terms

\[^3S \quad ^3P \quad ^3D \]

- 3s3p \(^1P_1\)
- 3s3d \(^1D_2\)
- 3s3p \(^3P_{2,1,0}\)

resonance line (strong)
intercombination line (weak)
The story so far:

Hierarchy of interactions

Central Field configuration, $n_1 l_1 n_2 l_2 \ldots$

Residual Electrostatic \rightarrow Terms, $L = S, P, D \ldots$

Spin-Orbit \rightarrow Level, $J = |L - S| \rightarrow L + S$

H_3: Nuclear Effects on atomic energy

$H_3 \ll H_2 \ll H_1 \ll H_0$
Lecture 5

• Nuclear effects on energy levels
 – Nuclear spin
 – addition of nuclear and electron angular momenta

• How to find the nuclear spin

• Isotope effects:
 – effects of finite nuclear mass
 – effects of nuclear charge distribution

• Selection Rules
Nuclear effects in atoms

Nucleus:
- stationary
- infinite mass
- point

 Corrections

Nuclear spin → magnetic dipole interacts with electrons

orbits centre of mass with electrons

charge spread over nuclear volume
Nuclear Spin interaction

Magnetic dipole ~ angular momentum

\[\mu = - \gamma \lambda \hbar \]

\[\mu_l = - g_l \mu_B l \quad \mu_s = - g_s \mu_B s \]

\[\mu_I = - g_I \mu_N I \]

\[g_I \approx 1 \quad \mu_N = \mu_B \times \frac{m_e}{m_P} \approx \mu_B / 2000 \]

Perturbation energy:

\[\hat{H}_3 = - \mu_I \cdot B_{el} \]
Magnetic field of electrons: Orbital and Spin

Closed shells: zero contribution
s orbitals: largest contribution – short range $\sim 1/r^3$
l > 0, smaller contribution - neglect

$$\hat{H}_3 = -\hat{\mu}_I \cdot \hat{B}_{el}$$

$$B_{el} \sim \frac{\mu_0}{4\pi} \mu_B \left\langle \frac{1}{r^3} \right\rangle.$$

$$B_{el} \sim \frac{\mu_0 \mu_B}{4\pi a_0^3} \sim 6T$$
\[\hat{H}_3 = -\hat{\mu}_I \cdot \hat{B}_{el} \]

\[B_{el} = (\text{scalar quantity}) \times J \]

Usually dominated by spin contribution in s-states:

Fermi “contact interaction”.
Calcuable only for Hydrogen in ground state, 1s
Coupling of I and J

$$\hat{H}_3 = -\hat{\mu}_I \cdot \hat{B}_{el}$$

Depends on I Depends on J

$$\hat{H}_3 = A_J \hat{I} \cdot \hat{J}$$

Nuclear spin interaction energy:

$$\Delta E = A_J \left\langle \hat{I} \cdot \hat{J} \right\rangle$$

empirical Expectation value
Vector model of nuclear interaction

\[\mathbf{F} = \mathbf{I} + \mathbf{J} \]

\(\mathbf{I} \) and \(\mathbf{J} \) precess around \(\mathbf{F} \)

\[\mathbf{I} \cdot \mathbf{J} = \frac{1}{2} \left\{ \mathbf{F}^2 - \mathbf{I}^2 - \mathbf{J}^2 \right\} \]
Hyperfine structure

Hfs interaction energy: \[\Delta E = A_J \left\langle \hat{I} \cdot \hat{J} \right\rangle \]

Vector model result: \[\hat{I} \cdot \hat{J} = \frac{1}{2} \left\{ F'^2 - I^2 - J^2 \right\} \]

Hfs energy shift:
\[\Delta E = \frac{A_J}{2} \left\{ F(F + 1) - I(I + 1) - J(J + 1) \right\} \]

Hfs interval rule:
\[\Delta E_{F'} = \Delta E(F') - \Delta E(F' - 1) \sim A_J F' \]
Finding the nuclear spin, I

- Interval rule – finds F, then for known J \rightarrow I
- Number of spectral lines
 $(2I + 1)$ for $J > I$, $(2J + 1)$ for $I > J$
- Intensity
 Depends on statistical weight $(2F + 1)$
 finds F, then for known J \rightarrow I
Isotope effects

\[E_n \sim \frac{Z^2 e^4 m_r}{2\hbar^2 n^2} \]

- Orbiting about fixed nucleus, infinite mass
- Orbiting about centre of mass

reduced mass
Isotope effects

\[E_n \sim \frac{Z^2 e^4 m_r}{2 \hbar^2 n^2} \]

- Orbiting about fixed nucleus, infinite mass
- Orbiting about centre of mass

Reduction mass
Lecture 6

• Selection Rules

• Atoms in magnetic fields
 – basic physics; atoms with no spin
 – atoms with spin: anomalous Zeeman Effect
 – polarization of the radiation
Parity selection rule

Parity (-1) must change

$\Delta l = \pm 1$

N.B. Error in notes eqn (161)
Configuration

\[
\langle \psi_1(1s)\psi_2(2p)|r_1 + r_2 |\psi_1(3p)\psi_2(3d)\rangle \\
= \langle \psi_1(1s)|r_1 |\psi_1(3p)\rangle \times \langle \psi_2(2p)|\psi_2(3d)\rangle + \langle \psi_2(2p)|r_2 |\psi_2(3d)\rangle \times \langle \psi_1(1s)|\psi_1(3p)\rangle \\
= 0
\]

Only one electron "jumps"

\[
\Delta n = \text{anything} \\
\Delta l = \pm 1
\]
Selection Rules:

Conservation of angular momentum

\[\Delta L = 0, \pm 1 \]

\[\Delta S = 0 \]

\[\Delta M_J = 0, \pm 1 \]
Atoms in magnetic fields
Effect of B-field on an atom with no spin

Interaction energy - Precession energy:

$$\Delta E_Z = -\mu_L \cdot B_{\text{ext}}$$
Normal Zeeman Effect

Level is split into equally Spaced sub-levels (states)

Selection rules on M_L give a spectrum of the normal Lorentz Triplet
Effect of B-field on an atom with spin-orbit coupling

Precession of \(L \) and \(S \) around the resultant \(J \) leads to variation of projections of \(L \) and \(S \) on the field direction.
Projections of L and S on z axis vary owing to precession around J.

m_L and m_S are no longer good quantum numbers.
Total magnetic moment does not lie along axis of \mathbf{J}.

Effective magnetic moment does lie along axis of \mathbf{J}, hence has constant projection on B_{ext} axis

\[\mu_{\text{eff}} = gJ \mu_B J \]
Perturbation Calculation of B_{ext} effect on spin-orbit level

Interaction energy
\[\hat{H}_{\text{mag}} = -\mu_{\text{atom}} \cdot \vec{B}_{\text{ext}} \]

Effective magnetic moment
\[\mu_{\text{eff}} = g_J \mu_B J \]

Perturbation Theory: expectation value of energy
\[\Delta E_{AZ} = g_J \mu_B \left\langle \vec{J} \cdot \vec{B}_{\text{ext}} \right\rangle \]

Energy shift of M_J level
\[\Delta E_{AZ} = g_J \mu_B B_{\text{ext}} M_J \]
Vector Model Calculation of B_{ext} effect on spin-orbit level

Projections of \mathbf{L} and \mathbf{S} on \mathbf{J} are given by

\[
\frac{|\mathbf{L} \cdot \mathbf{J}|}{|\mathbf{J}|^2} \frac{J}{J} = \mathbf{L}_J
\]

\[
\frac{|\mathbf{S} \cdot \mathbf{J}|}{|\mathbf{J}|^2} = \mathbf{S}_J
\]
Vector Model Calculation of B_{ext} effect on spin-orbit level

\[
\Delta E_{AZ} = g_L \mu_B \mathbf{L} \cdot \mathbf{B}_{\text{ext}} + g_S \mu_B \mathbf{S} \cdot \mathbf{B}_{\text{ext}}
\]

\[
= g_L \mu_B \frac{|\mathbf{L} \cdot \mathbf{J}|}{|\mathbf{J}|^2} \mathbf{J} \cdot \mathbf{B}_{\text{ext}} + g_S \mu_B \frac{|\mathbf{S} \cdot \mathbf{J}|}{|\mathbf{J}|^2} \mathbf{J} \cdot \mathbf{B}_{\text{ext}}
\]

\[
\Delta E_{AZ} = \mu_B \frac{3J^2 - L^2 + S^2}{2|\mathbf{J}|^2} J_z B_{\text{ext}}
\]

\[
\Delta E_{AZ} = \frac{[3J(J + 1) - L(L + 1) + S(S + 1)]}{2J(J + 1)} \mu_B B_{\text{ext}} M_J
\]

Perturbation Theory result

\[
\Delta E_{AZ} = g_J \mu_B B_{\text{ext}} M_J
\]
Anomalous Zeeman Effect:

$3s^2S_{1/2} - 3p^2P_{1/2}$ in Na
Polarization of Anomalous Zeeman components associated with Δm selection rules
Lecture 7

• Magnetic effects on fine structure
 - Weak field
 - Strong field

• Magnetic field effects on hyperfine structure:
 - Weak field
 - Strong field
Summary of magnetic field effects on atom with spin-orbit interaction
Total magnetic moment does not lie along axis of \mathbf{J}.

Effective magnetic moment does lie along axis of \mathbf{J}, hence has constant projection on B_{ext} axis

$$\mu_{\text{eff}} = g_J \mu_B J$$
Perturbation Calculation of B_{ext} effect on spin-orbit level

Interaction energy
\[\hat{H}_{\text{mag}} = -\mu_{\text{atom}} \cdot B_{\text{ext}} \]

Effective magnetic moment
\[\mu_{\text{eff}} = g_J \mu_B J \]

Perturbation Theory:
expectation value of energy
\[\Delta E_{AZ} = g_J \mu_B \left\langle \hat{J} \cdot \hat{B}_{\text{ext}} \right\rangle \]

Energy shift of M_J level
\[\Delta E_{AZ} = g_J \mu_B B_{\text{ext}} M_J \]

What is g_J?
Vector Model Calculation of B_{ext} effect on spin-orbit level

Projections of \underline{L} and \underline{S} on \underline{J} are given by

\[\frac{|\underline{L} \cdot \underline{J}| J}{|\underline{J}|^2} = \underline{L}_J \]

\[\frac{|\underline{S} \cdot \underline{J}| J}{|\underline{J}|^2} = \underline{S}_J \]
Vector Model Calculation of B_{ext} effect on spin-orbit level

$$
\Delta E_{AZ} = g_L \mu_B L \cdot B_{\text{ext}} + g_S \mu_B S \cdot B_{\text{ext}} \\
= g_L \mu_B \frac{|L \cdot J|}{|J|^2} J \cdot B_{\text{ext}} + g_S \mu_B \frac{|S \cdot J|}{|J|^2} J \cdot B_{\text{ext}}
$$

$$
\Delta E_{AZ} = \mu_B \frac{\left[3J^2 - L^2 + S^2\right]}{2|J|^2} J_z B_{\text{ext}}
$$

$$
\Delta E_{AZ} = \frac{[3J(J + 1) - L(L + 1) + S(S + 1)]}{2J(J + 1)} \mu_B B_{\text{ext}} M_J
$$

Perturbation Theory result

$$
\Delta E_{AZ} = g_J \mu_B B_{\text{ext}} M_J
$$
Anomalous Zeeman Effect:

$3s^2S_{1/2} - 3p^2P_{1/2}$ in Na

\[g_J(\Sigma_{1/2}) = 2/3 \]
\[g_J(\Sigma_{1/2}) = 2 \]
Strong field effects on atoms with spin-orbit coupling

Spin and Orbit magnetic moments couple more strongly to B_{ext} than to each other.
Strong field effect on L and S.

L and S precess independently around B_{ext}.

Spin-orbit coupling is relatively insignificant.

m_L and m_S are good quantum numbers.
Splitting of level in strong field: *Paschen-Back Effect*

N.B. Splitting like Normal Zeeman Effect

Spin splitting = 2 x Orbital

\[g_S = 2 \times g_L \]
Oxford Physics: 3rd Year, Atomic Physics
Magnetic field effects on hyperfine structure
Hyperfine structure in Magnetic Fields

\[A J I \cdot J + g_J \mu_B J \cdot B_{\text{ext}} - g_I \mu_N I \cdot B_{\text{ext}} \]

- Hyperfine interaction
- Electron/Field interaction
- Nuclear spin/Field interaction

Weak field: \[A I \cdot J \gg g_J \mu_B J \cdot B_{\text{ext}} \]
Strong field: \[A I \cdot J \ll g_J \mu_B J \cdot B_{\text{ext}} \]
Weak field effect on hyperfine structure

I and J precess rapidly around F. F precesses slowly around B_{ext}

I, J, F and M_F are good quantum numbers

\[
\mu_F = -g_F \mu_B F
\]
Only contribution to μ_F is component of μ_J along F

\[\mu_F = -g_J \mu_B \frac{J \cdot F}{F} \times \frac{F}{F} \]

Find this using Vector Model
\[g_F = g_J \times \frac{J \cdot F}{F^2} \]

\[F = I + J \]

\[I^2 = F^2 + J^2 - 2J \cdot F \]

\[J \cdot F = \frac{1}{2} \{ F(F+1) + J(J+1) - I(I+1) \} \]

\[g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)} \]
Each hyperfine level is split by g_F term

Ground level of Na:

$J = \frac{1}{2} ; I = \frac{3}{2} ;$

$F = 1$ or 2

$F = 2: g_F = \frac{1}{2} ;$

$F = 1: g_F = -\frac{1}{2}$

Equation:

$$\Delta E = A_J \mathbf{I} \cdot \mathbf{J} + g_J \mu_B \mathbf{J} \cdot \mathbf{B}_{\text{ext}}$$

$$\Delta E = \frac{A_F}{2} \{F(F+1) - J(J+1) - I(I+1)\} + g_F \mu_B F \cdot B_{\text{ext}}$$

N.B. notes error eqn 207
Sign inversion of g_F for $F = 1$ and $F = 2$

- $I = 3/2$, $J = 1/2$, $F = 2$ (positive)
- $I = 3/2$, $J = -1/2$, $F = 1$ (negative)
Strong field effect on hfs.

\[\Delta E = A_J \vec{I} \cdot \vec{J} + g_J \mu_B J \cdot B_{\text{ext}} \]

\(\vec{J} \) precesses rapidly around \(B_{\text{ext}} \) (z-axis)

\(\vec{I} \) tries to precess around \(\vec{J} \) but can follow only the time averaged component along z-axis i.e. \(J_z \)

So \(A_J \vec{I} \cdot \vec{J} \) term \(\rightarrow A_J M_I M_J \)
Strong field effect on hfs.

Energy

\[\Delta E_{BG} = A_J M_I M_J + g_J \mu_B M_J B_{ext} \]

Na ground state

\[^2S_{1/2} \quad ^2D \]

Dominant term
Strong field effect on hfs.

Energy:

$$\Delta E = A_J I \cdot J + g_J \mu_B J \cdot B_{\text{ext}}$$

J precesses around field B_{ext}

I tries to precess around J

I precesses around what it can "see" of J:

The z-component of J: J_Z

$$\Delta E_{BG} = A_J M_I M_J + g_J \mu_B M_J B_{\text{ext}}$$
Magnetic field effects on hfs

Weak field: F, M_F are good quantum nos.
Resolve μ_J along F to get effective magnetic moment and g_F

$$\Delta E(F, M_F) = g_F \mu_B M_F B_{\text{ext}}$$

\rightarrow “Zeeman” splitting of hfs levels

Strong field: M_I and M_J are good quantum nos.
J precesses rapidly around B_{ext};
I precesses around z-component of J i.e. what it can “see” of J

$$\Delta E(M_J, M_I) = g_J \mu_B M_J B_{\text{ext}} + A_J M_I M_J$$

\rightarrow hfs of “Zeeman” split levels
Lecture 8

• X-rays: excitation of “inner-shell” electrons

• High resolution laser spectroscopy
 - The Doppler effect
 - Laser spectroscopy
 - “Doppler-free” spectroscopy
X – Ray Spectra

Bremstrahlung

- Maximum energy of incident electrons

Characteristic X-rays

- Intensity vs. Wavelength
Characteristic X-rays

• Wavelengths fit a simple series formula

• All lines of a series appear together
 – *when excitation exceeds threshold value*

• Threshold energy just exceeds energy of shortest wavelength X-rays

• Above a certain energy no new series appear.
Generation of characteristic X-rays

Incident high voltage electron

Ejected electron

X-ray
X-ray series

N
\[n=4 \]

M
\[n=3 \]

L
\[n=2 \]

K
\[n=1 \]

K-series

L-series
\[\alpha \beta \gamma \]

M-series
\[\alpha \beta \gamma \]

Oxford Physics: 3rd Year, Atomic Physics
X-ray spectra for increasing electron impact energy

- **K-threshold**
- **L-threshold**

Max voltage
Binding energy for electron in hydrogen = R/n^2

Binding energy for “hydrogen-like” system = RZ^2/n^2

Screening by other electrons in inner shells:
$Z \rightarrow (Z - \sigma)$

Binding energy of inner-shell electron:
$E_n = R(Z - \sigma)^2 / n^2$

Transitions between inner-shells:
$E_n - E_m = \nu = R\{(Z - \sigma_i)^2 / n_i^2 - (Z - \sigma_j)^2 / n_j^2\}$
Fine structure of X-rays

\[\Delta E_{fs} = \frac{5.8Z^4}{n^3l(l + 1)} \]

\[\Delta l = \pm 1 \quad \Delta j = 0, \pm 1 \]
X-ray absorption spectra

Absorption coefficient vs. Wavelength

K-edge, L-edge, M-edge

L_I, L_{II}, L_{III}
Auger effect

Kinetic Energy \((E_K - E_L) - E_L\)

Potential Energy \((E_K - E_L)\)

X-ray absorption electron emitted
High resolution laser spectroscopy
Doppler broadening

Doppler Shift:

\[\nu = \nu_0 \left(1 \pm \frac{v}{c}\right) \]

Maxwell-Boltzmann distribution of Atomic speeds

\[dN = N_0 e^{-\frac{Mv^2}{2kT}} dv \]

Distribution of Intensity

\[I(\nu) = I(\nu_0) \exp \left[-\frac{Me^2}{2kT} \left(\frac{\nu - \nu_0}{\nu_0}\right)^2 \right] \]

Doppler width

\[\Delta \nu_D = \frac{2\nu}{c} \left[\frac{2kT}{M} \log_e 2 \right]^{1/2} \]

Notes error
Crossed beam Spectroscopy
Saturation effect on absorption

Strong pump at ω_L reduces population of ground state for atoms Doppler shifted by $(\omega_L - \omega_o)$. Hence reduced absorption for this group of atoms.
Absorption of weak probe ω_L

Absorption of strong pump ω_L

Probe and pump laser at same frequency ω_L
But propagating in opposite directions
Probe Doppler shifted down = Pump Doppler shifted up.
Hence probe and pump “see” different atoms.
Saturation of “zero velocity” group at ω_O

Counter-propagating pump and probe
“see” same atoms at $\omega_L = \omega_O$

i.e. atoms moving with zero velocity relative to light
Saturation spectroscopy

Tunable Laser

Fabry-Perot Interferometer

Photo-multiplier

Strong Pump Beam

Frequency calibration

Atomic Vapour Cell

Doppler-free Spectrum

Chopper

Weak Probe Beam

Photo-multiplier

Oxford Physics: 3rd Year, Atomic Physics
Principle of Doppler-free two-photon absorption

\[E = h\nu(1 + v/c) + h\nu(1 - v/c) = 2h\nu \]

Photon Doppler shifted up + Photon Doppler shifted down
Two-photon absorption spectroscopy

Diagram:
- Tunable Laser
- Optical isolator
- Lens
- Atomic Vapour Cell
- Curved mirror
- Fabry-Perot interferometer
- Photomultiplier
- Frequency calibration
- Fluorescence
- Photomultiplier
- Doppler-free Spectrum
Doppler-free spectroscopy of molecules in high temperature flames

Oxy-acetylene Torch ~ 3000K
Doppler-free spectrum of OH molecule in a flame
The End