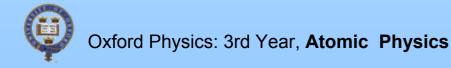
Atomic Physics 3rd year B1

P. Ewart



- Lecture notes
- Lecture slides
- Problem sets

All available on Physics web site:

http:www.physics.ox.ac.uk/users/ewart/index.htm

Atomic Physics:

- Astrophysics
- Plasma Physics
- Condensed Matter
- Atmospheric Physics
- Chemistry
- Biology

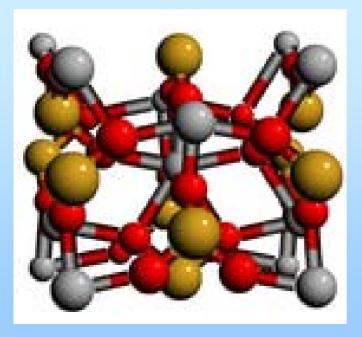
Technology

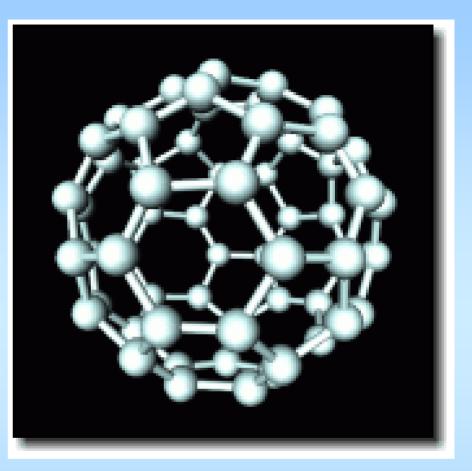
- Street lamps
- Lasers
- Magnetic Resonance Imaging
- Atomic Clocks
- Satellite navigation: GPS
- etc

Astrophysics

Condensed Matter

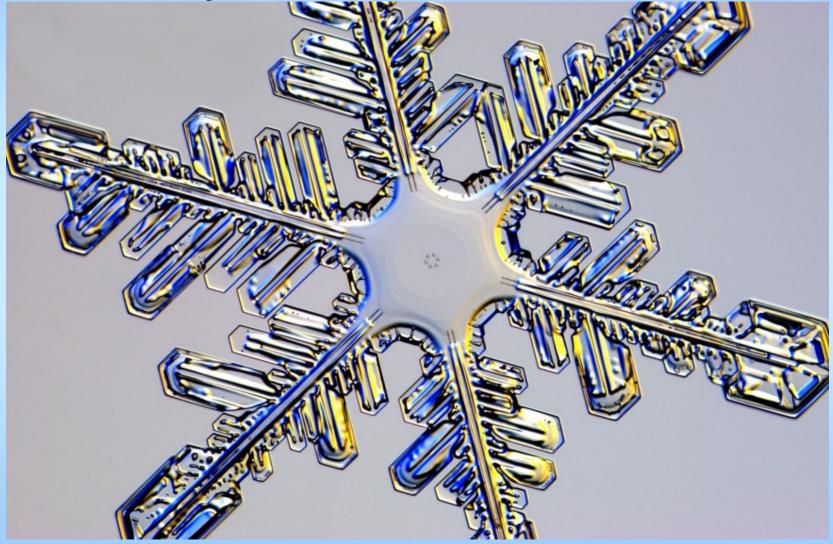
Zircon mineral crystal



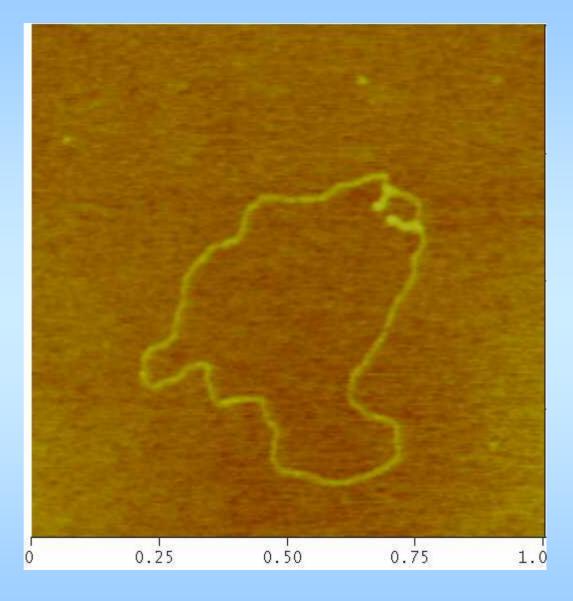


C₆₀ Fullerene

Snow crystal



Lasers

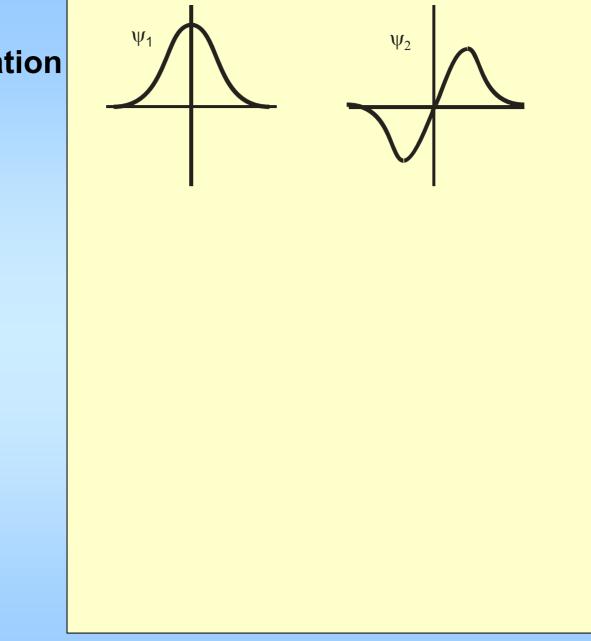


DNA strand

Lecture 1

- How we study atoms:
 - emission and absorption of light
 - spectral lines
- Atomic orders of magnitude
- Basic structure of atoms
 - approximate electric field inside atoms

Atomic radiation



Spectral Line Broadening

Homogeneous e.g.

Lifetime (Natural)

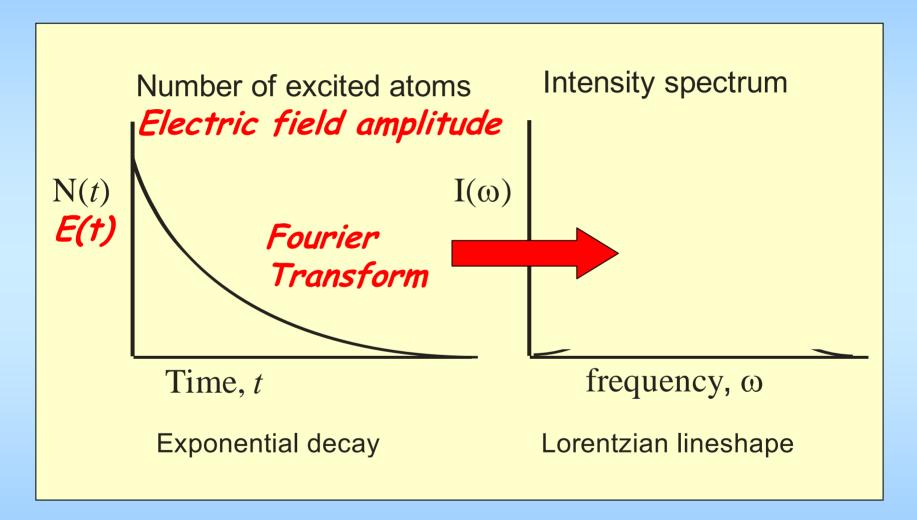
Collisional (Pressure)

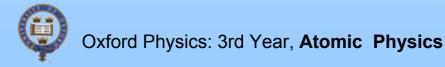
Inhomogeneous e.g.

Doppler (Atomic motion)

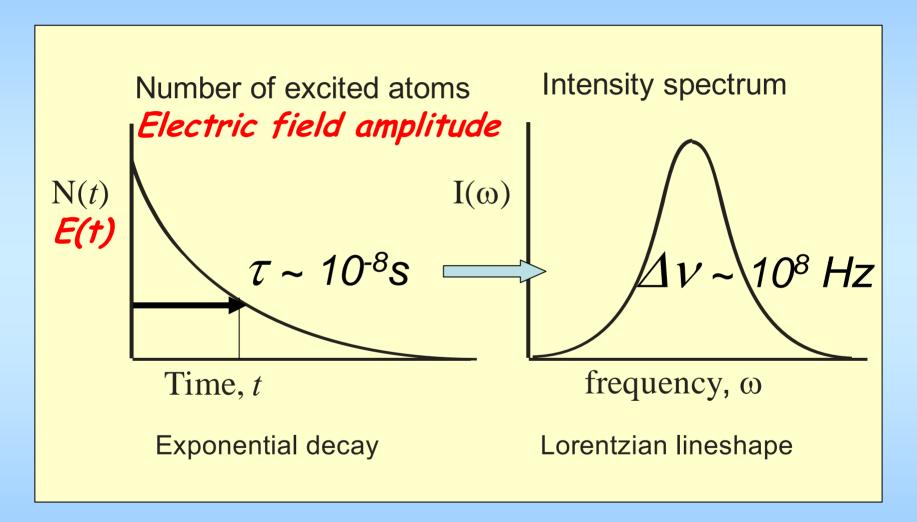
Crystal Fields

Lifetime (natural) broadening

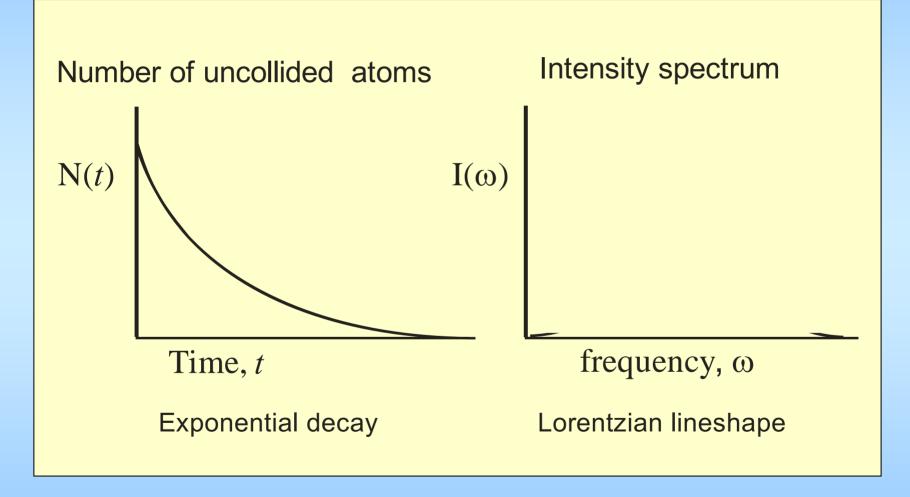


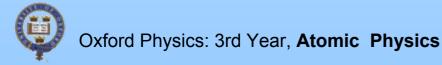


Lifetime (natural) broadening

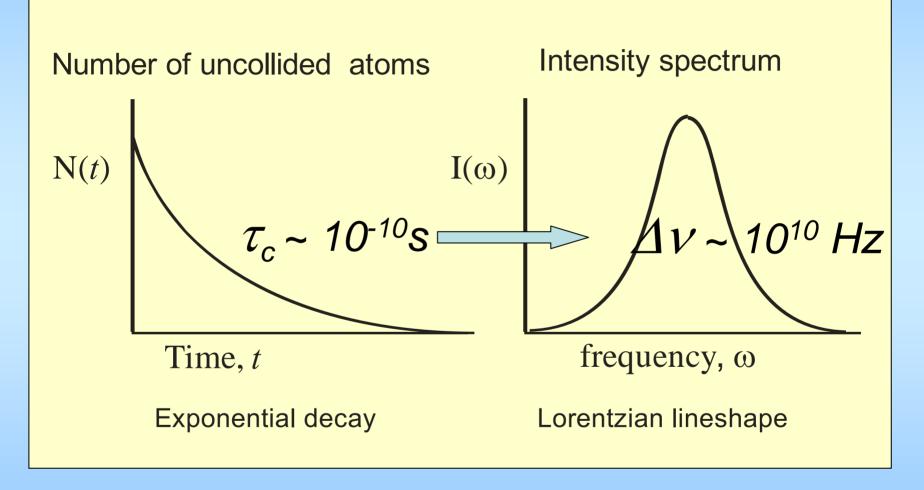


Collision (pressure) broadening

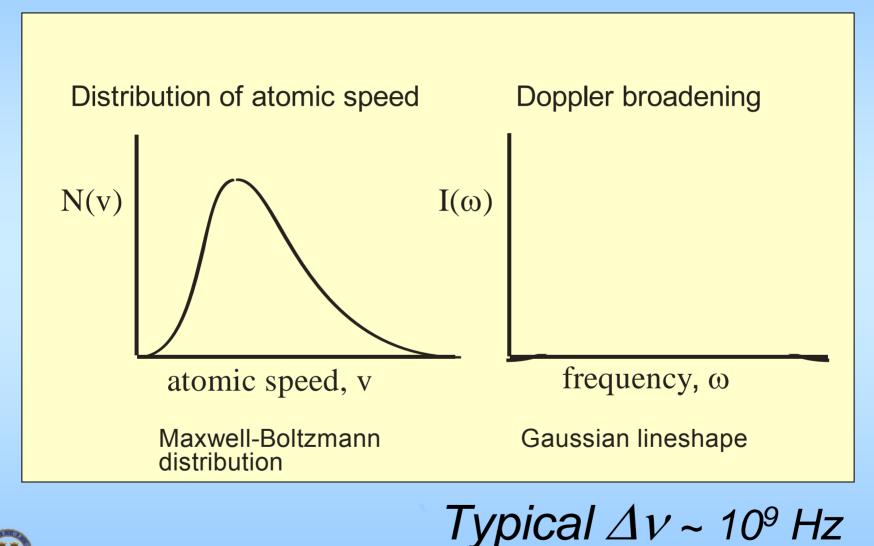




Collision (pressure) broadening



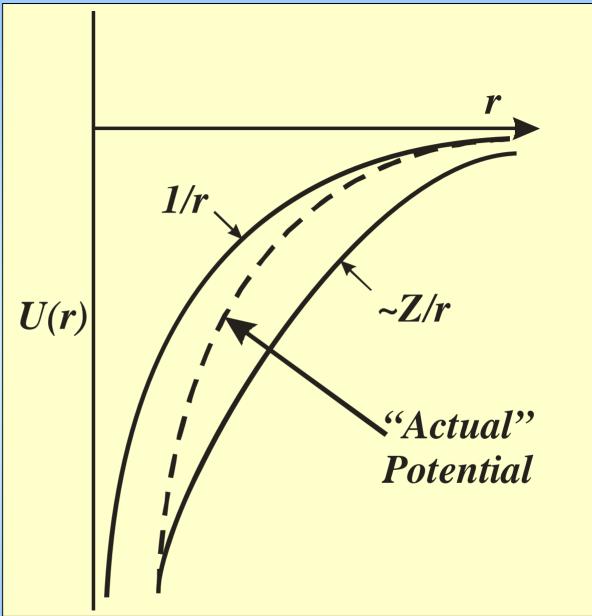
Doppler (atomic motion) broadening

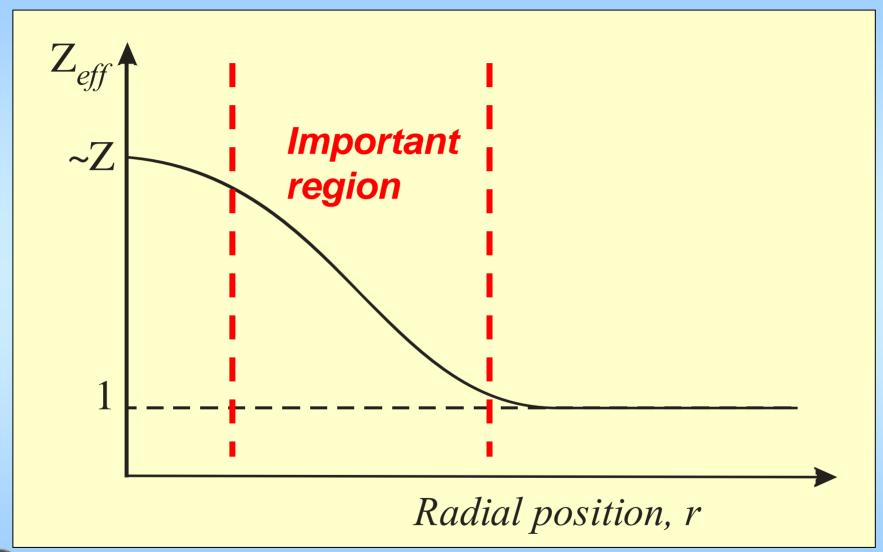


Atomic orders of magnitude

 $10^{-19} \text{ J} \rightarrow \sim 2 \text{ eV}$ Atomic energy: $^{1}/_{40} \text{ eV}$ Thermal energy: 13.6 eV Ionization energy, H: = Rydberg Constant 109,737 cm⁻¹ Atomic size, Bohr radius: 5.3 x 10⁻¹¹m Fine structure constant, $\alpha = v/c$: 1/137 9.27 x 10⁻²⁴ JT⁻¹ Bohr magneton, $\mu_{\rm B}$:

The Central Field





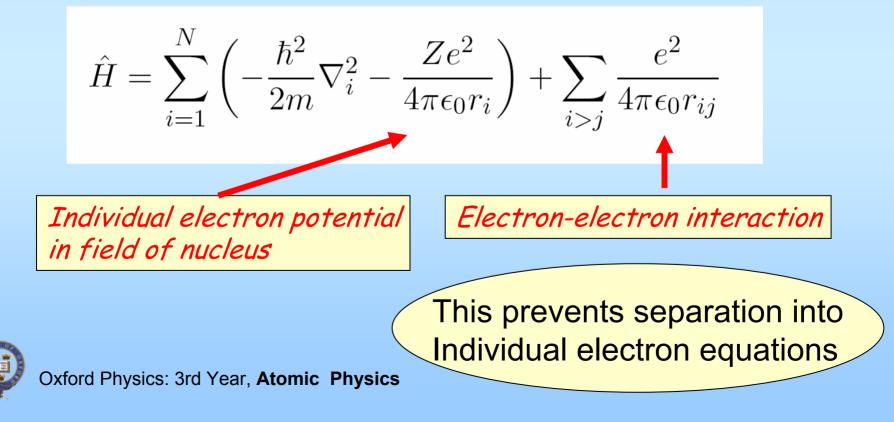
Lecture 2

- The Central Field Approximation:
 physics of wave functions (Hydrogen)
- Many-electron atoms
 - atomic structures and the Periodic Table
- Energy levels
 - deviations from hydrogen-like energy levels
 - finding the energy levels; the quantum defect

Schrödinger Equation (1-electron atom)

$$-\frac{\hbar^2}{2m}\nabla^2\psi - \frac{Ze^2}{4\pi\epsilon_0 r}\psi = E\psi$$

Hamiltionian for many-electron atom:



Central potential in Hydrogen:

 $V(r) \sim 1/r$,

separation of ψ into radial and angular functions:

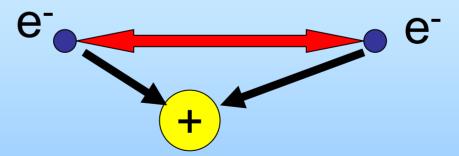
$$\psi = R(r) Y^{m}{}_{l}(\theta, \phi) \chi(m_{s})$$

Therefore we seek a potential for multi-electron atom that allows separation into individual electron wave-functions of this form

Electron – Electron interaction term:

 $\sum_{i>i} \frac{\epsilon}{4\pi\epsilon_0 r_{ij}}$

Treat this as composed of two contributions: (a)a centrally directed part (b)a non-central **Residual Electrostatic** part



Hamiltonian for Central Field Approximation

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$
where $\hat{H}_0 = \sum_i \left\{ -\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right\}$
Central Field Potential

 \hat{H}_1 = residual electrostatic interaction

Perturbation Theory Approximation:
$$\hat{H}_1 << \hat{H}_o$$

Zero order Schrödinger Equation: $\hat{H}_0 \ \psi = E_0 \ \psi$

 \hat{H}_0 is spherically symmetric so equation is separable - solution for individual electrons:

$$\psi(n, l, m_l, m_s) = R'_{n,l}(r)Y_l^m(\theta, \phi)\chi(m_s)$$

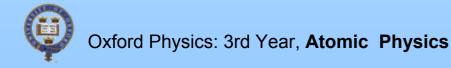
Radial Angular Spin

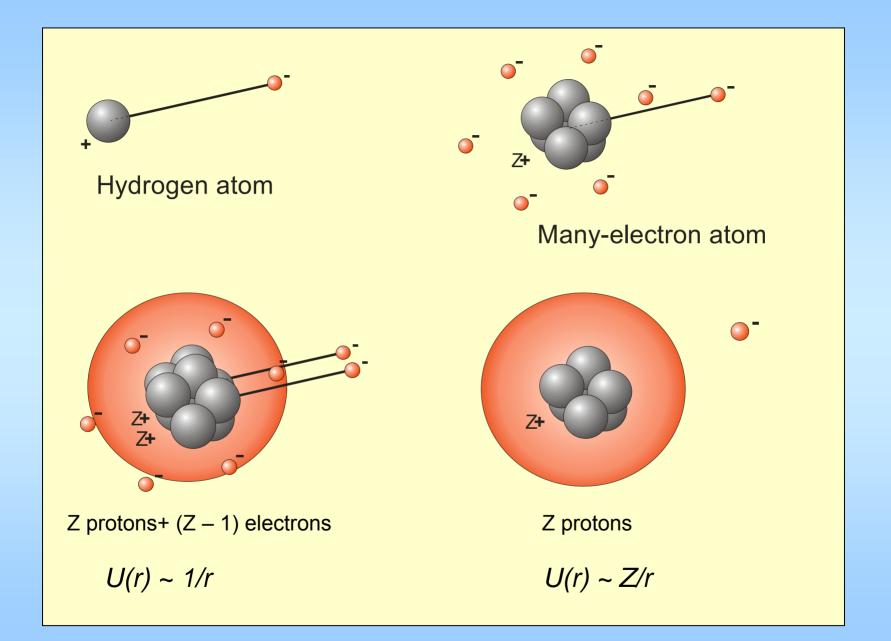
Central Field Approximation:

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$

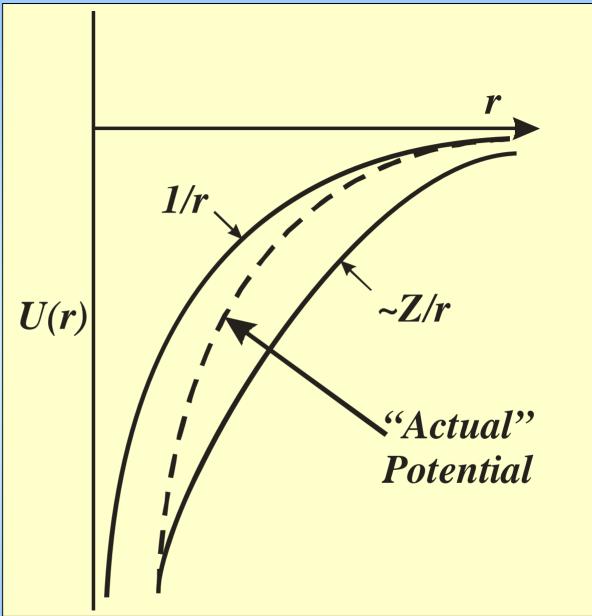
where $\hat{H}_0 = \sum_i \left\{ -\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right\}$

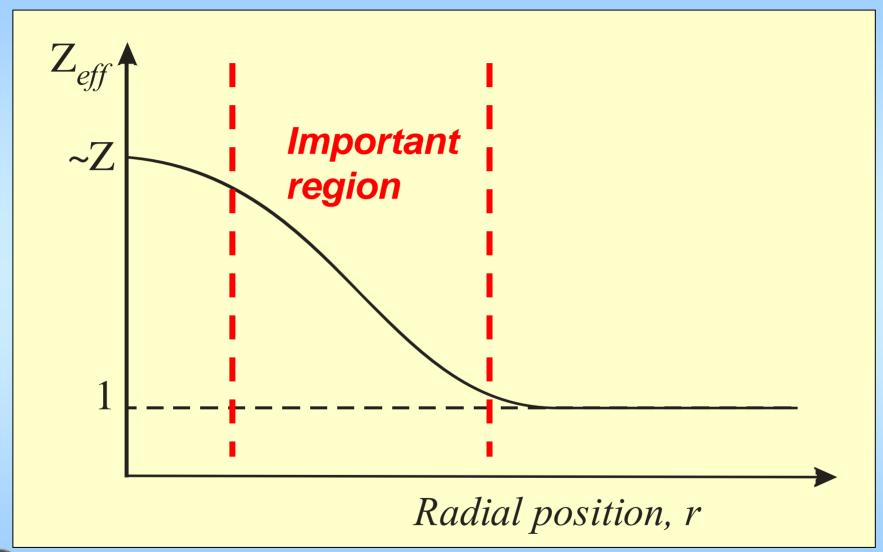
What form does $U(r_i)$ take?





The Central Field





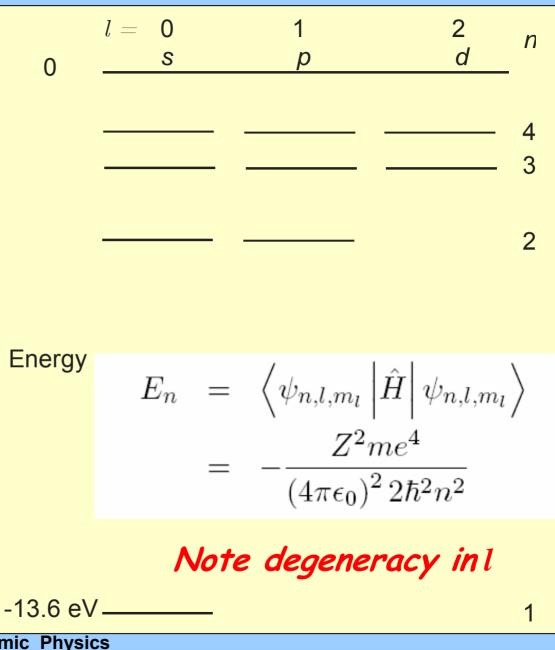
Finding the Central Field

- "Guess" form of U(r)
- Solve Schrödinger eqn. \rightarrow Approx ψ .
- Use approx ψ to find charge distribution
- Calculate $U_c(r)$ from this charge distribution
- Compare $U_c(r)$ with U(r)
- Iterate until $U_c(r) = U(r)$

Energy eigenvalues for Hydrogen:

$$E_n = \left\langle \psi_{n,l,m_l} \left| \hat{H} \right| \psi_{n,l,m_l} \right\rangle$$
$$= -\frac{Z^2 m e^4}{\left(4\pi\epsilon_0\right)^2 2\hbar^2 n^2}$$

H Energy level diagram



Revision of Hydrogen solutions:

Product wavefunction: Spatial x Angular function

Normalization

$$\int R_{n,l}^2(r)r^2dr = 1 \qquad \int \left|Y_l^{m_l}(\theta,\phi)\right|^2 d\Omega = 1$$

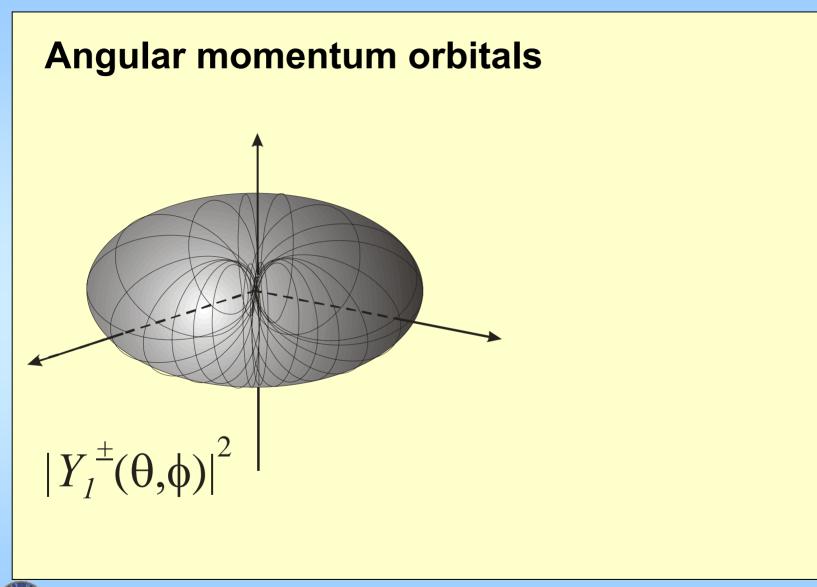
$Y_l^{m_l}(\theta,\phi)$: Eigenfunctions of angular momentum operators

$$\hat{l}^2 Y_l^{m_l}(\theta, \phi) = l(l+1)\hbar^2 Y_l^{m_l}(\theta, \phi)$$
$$\hat{l}_z Y_l^{m_l}(\theta, \phi) = m_l \hbar Y_l^{m_l}(\theta, \phi)$$

 $\psi_{n,l,m_l}(r,\theta,\phi) = R_{n,l}(r)Y_l^{m_l}(\theta,\phi)$

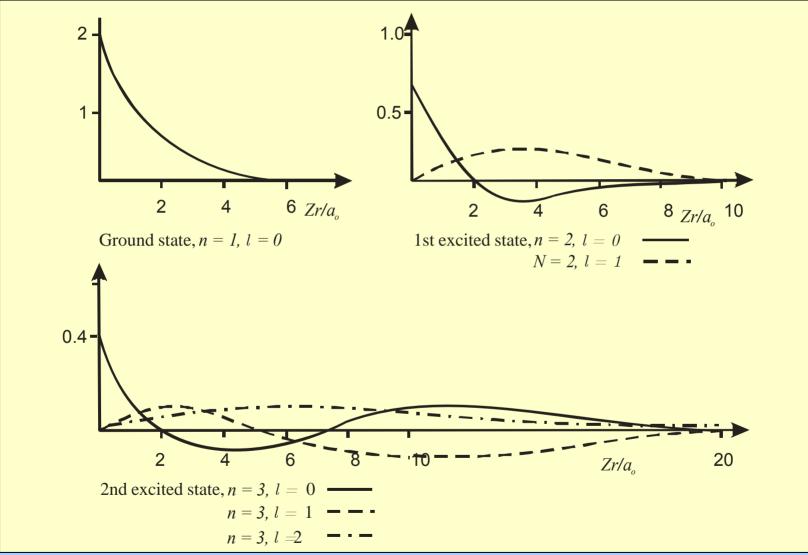
Eigenvalues

$$l = 0, 1, 2...(n-1)$$
 $-l \le m_l \le l$





Radial wavefunctions



Oxford Physics: 3rd Year, Atomic Physics

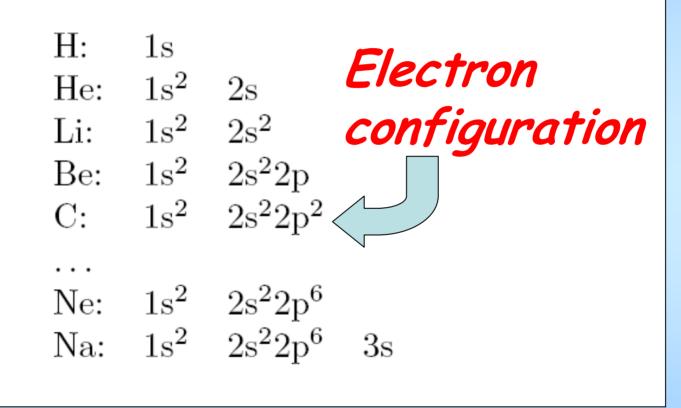
Radial wavefunctions

- l = 0 states do not vanish at r = 0
- $l \neq 0$ states vanish at r = 0, and peak at larger r as l increases
- Peak probability (size) ~ n^2
- l = 0 wavefunction has (n-1) nodes
- l = 1 has (n-2) nodes etc.
- Maximum l=(n-1) has no nodes

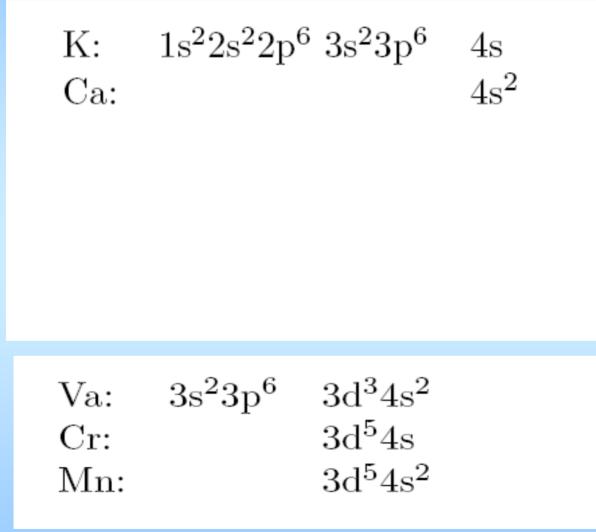
Electrons arranged in "shells" for each n

The Periodic Table

Shells specified by *n* and *l* quantum numbers



The Periodic Table



Oxford Physics: 3rd Year, Atomic Physics

The Periodic Table *Rare gases*

He:
$$1s^2$$

Ne: $1s^22s^22p^6$
Ar: $1s^22s^22p^63s^23p^6$
Kr: (...) $4s^24p^6$
Xe: (....) $5s^25p^6$
Rn: (....) $6s^26p^6$

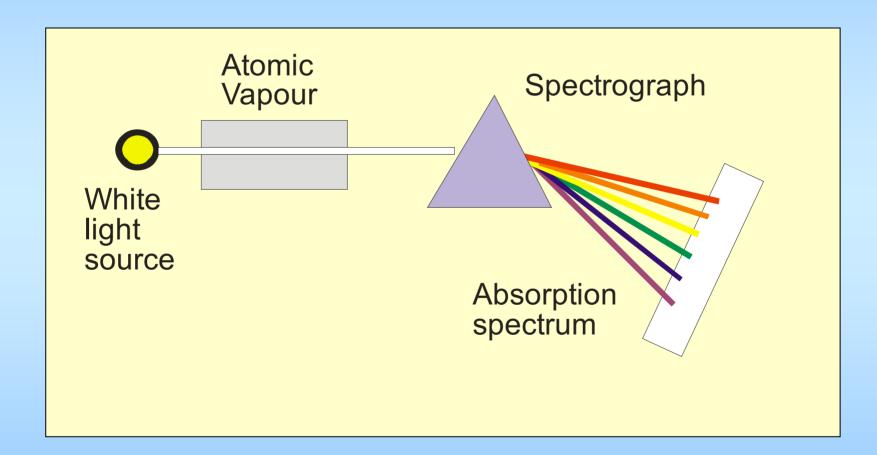
The Periodic Table *Alkali metals*

Li:
$$1s^{2}2s$$

Na: $1s^{2}2s^{2}2p^{6}3s$
Ca: $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s$
Rb: (...) $4s^{2}4p^{6}5s$
Cs: (....) $5s^{2}5p^{6}6s$
etc.

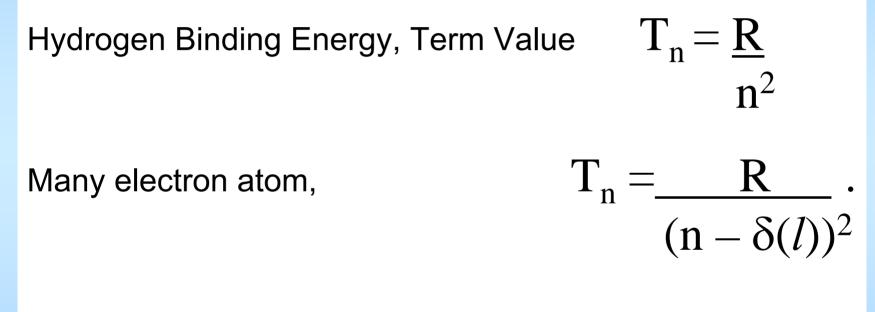


Absorption spectroscopy



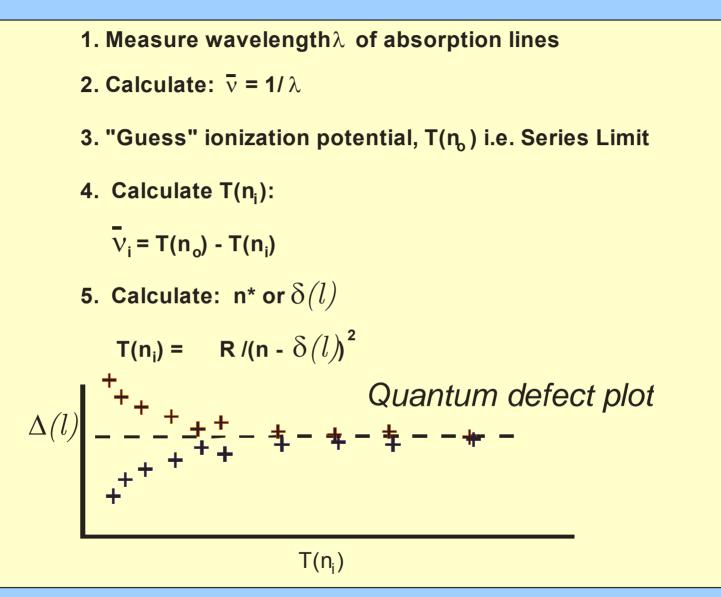


Finding the Energy Levels



$\delta(l)$ is the Quantum Defect

Finding the Quantum Defect

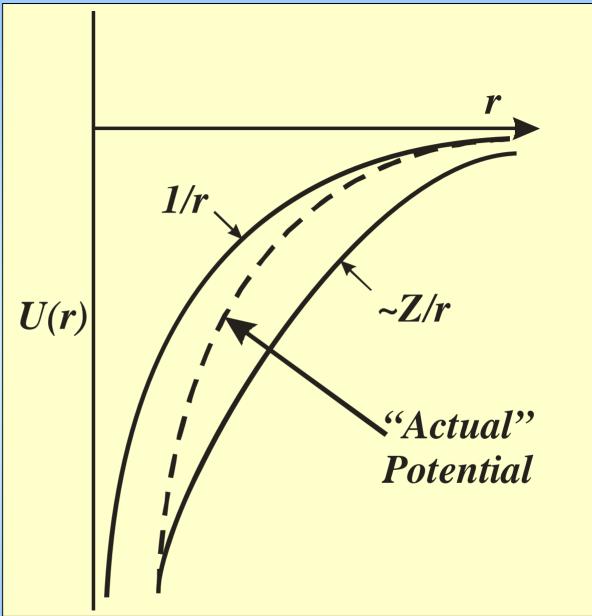


Oxford Physics: 3rd Year, Atomic Physics

Lecture 3

- Corrections to the Central Field
- Spin-Orbit interaction
- The physics of magnetic interactions
- Finding the S-O energy Perturbation Theory
- The problem of degeneracy
- The Vector Model (DPT made easy)
- Calculating the Spin-Orbit energy
- Spin-Orbit splitting in Sodium as example

The Central Field



Corrections to the Central Field

• Residual electrostatic interaction:

$$\hat{H}_1 = \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}} - \sum_i \left\{ \frac{Ze^2}{4\pi\epsilon_0 r_i} + U(r_i) \right\}$$

• Magnetic spin-orbit interaction:

$$\hat{H}_2 = -\underline{\mu}.\underline{B}_{\text{orbit}}$$

Magnetic spin-orbit interaction

- Electron moves in Electric field of nucleus, so sees a Magnetic field *B*_{orbit}
- Electron spin precesses in B_{orbit} with energy: - μ .B which is proportional to <u>s</u>.<u>l</u>
- Different orientations of \underline{s} and \underline{l} give different total angular momentum $\underline{j} = \underline{l} + \underline{s}$.
- Different values of j give different <u>s.l</u> so have different energy:

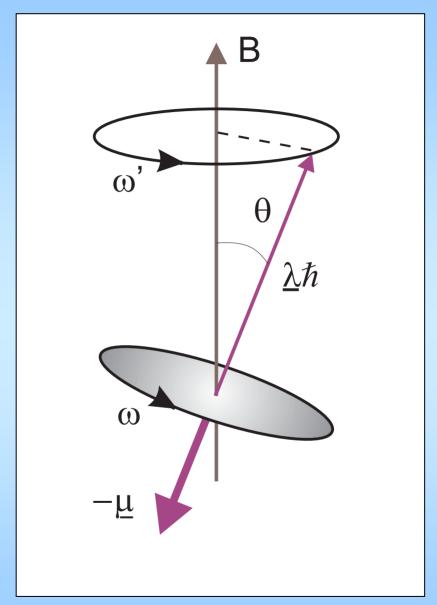
The energy level is split for $l \pm 1/2$

Larmor Precession

Magnetic field B exerts a torque on magnetic moment μ causing precession of μ and the associated angular momentum vector $\underline{\lambda}$

The additional angular velocity ω' changes the angular velocity and hence energy of the orbiting/spinning charge

$$\Delta E = - \underline{\mu} \cdot \underline{B}$$



Spin-Orbit interaction: Summary

$$\underline{B} = -\frac{\underline{v} \times \underline{E}}{c^2} \qquad \underline{B} = -\frac{1}{mc^2} \underline{p} \times \underline{r} \frac{|\underline{E}|}{|\underline{r}|} \qquad \underline{B} = \frac{1}{mc^2} \frac{|\underline{E}|}{|\underline{r}|} \hat{\underline{l}}$$
$$|\underline{E}| = -\frac{\partial \phi(r)}{\partial r} \qquad |\underline{E}| = -\frac{1}{e} \frac{\partial U(r)}{\partial r}$$
$$\underline{B} = \frac{1}{emc^2} \frac{1}{|\underline{r}|} \frac{\partial U(r)}{\partial r} \hat{\underline{l}} \qquad \underline{B} \text{ parallel to } \underline{\underline{l}}$$
$$\underline{\mu}_s = -g_s \frac{\mu_B}{\hbar} \hat{\underline{s}} \qquad \underline{\mu} \text{ parallel to } \underline{\underline{s}}$$
$$-\underline{\mu}_s \cdot \underline{B} \propto \frac{1}{r} \frac{\partial U(r)}{\partial r} \hat{\underline{s}} \cdot \hat{\underline{l}}$$

Oxford Physics: 3rd Year, Atomic Physics

Perturbation energy

$$-\underline{\mu}_{s} \cdot \underline{B} = \frac{\mu_{0}}{4\pi} Z g_{s} \mu_{B}^{2} \frac{1}{r^{3}} \frac{\underline{\hat{s}} \cdot \underline{\hat{l}}}{\hbar^{3}}$$

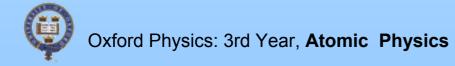
Radial integral

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{Z^3}{n^3 a_0^3 l (l+1/2) (l+1)}$$

Angular momentum operator

$$\underline{\hat{s}} \cdot \underline{\hat{l}} = \mathbf{?}$$

How to find
$$\langle \underline{\hat{s}} | \hat{\underline{l}} \rangle$$
 using perturbation theory?



Perturbation theory with degenerate states

Perturbation Energy:

$$\Delta E = \left\langle \psi_i \right| \hat{H}' \left| \psi_i \right\rangle$$

Change in wavefunction: So won't work if $E_i = E_j$ i.e. degenerate states.

$$\Delta \psi_{i} = \sum_{j \neq i} \frac{\left\langle \psi_{j} \right| \hat{H}' \left| \psi_{i} \right\rangle}{E_{i} - E_{j}} \psi_{j}$$

We need a diagonal perturbation matrix, i.e. off-diagonal elements are zero

 $\left\langle \psi_{1}\right|\hat{H}^{\prime}\left|\psi_{2}\right\rangle =0$

New wavefunctions:

New eignvalues:

$$\phi_1 = a\psi_1 + b\psi_2$$

$$\phi_2 = b^*\psi_1 - a^*\psi_2$$

$$\langle \phi_1 | \hat{H}' | \phi_2 \rangle = 0$$

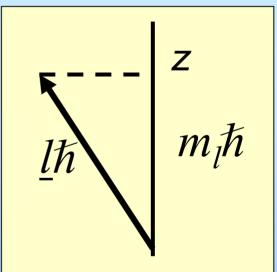
$$\Delta E_1 = \langle \phi_1 | \hat{H}' | \phi_1 \rangle, \ \Delta E_2 = \langle \phi_2 | \hat{H}' | \phi_2 \rangle$$

Oxford Physics: 3rd Year, Atomic Physics

The Vector Model

Angular momenta represented by vectors: \underline{l}^2 , \underline{s}^2 and \underline{j}^2 , and \underline{l} , $\underline{s} \underline{j}$ and with magnitudes: l(l+1), s(s+1) and j(j+1). and $\sqrt{l(l+1)}$, $\sqrt{s(s+1)}$ and $\sqrt{j(j+1)}$.

Projections of vectors: $\underline{l}, \underline{s}$ and \underline{j} on z-axis are $\underline{m}_{l}, \underline{m}_{s}$ and \underline{m}_{j}



Constants of the Motion - Good quantum numbers

Summary of Lecture 3: Spin-Orbit coupling

• Spin-Orbit energy

$$-\,\underline{\mu}_{s}\cdot\underline{B}\propto\frac{1}{r}\frac{\partial U(r)}{\partial r}\underline{\hat{s}}\cdot\underline{\hat{l}}$$

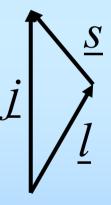
• Radial integral sets size of the effect.

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{Z^3}{n^3 a_0^3 l (l+1/2)(l+1)}$$

- Angular integral $< \underline{s}$. $\underline{l} >$ needs Degenerate Perturbation Theory
- New basis eigenfunctions:

$$\langle n, l, s, j, m_j |$$

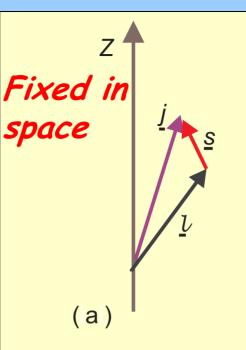
- j and j_z are constants of the motion
- Vector Model represents angular momenta as vectors
- These vectors can help identify constants of the motion
- These constants of the motion represented by good quantum numbers

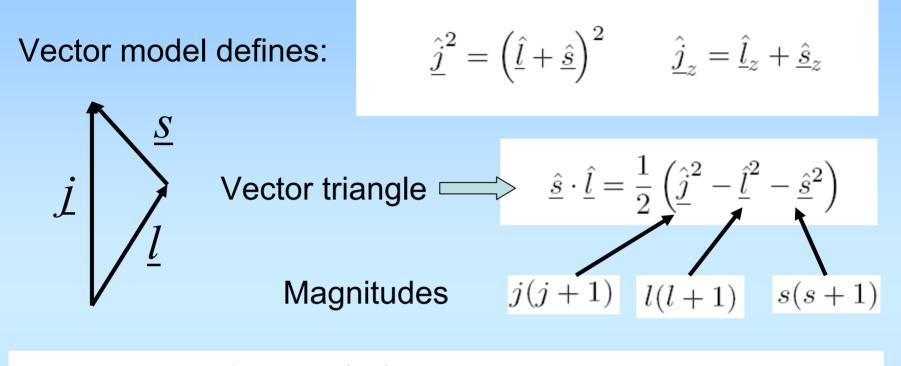


(a) No spin-orbit coupling
(b) Spin-orbit coupling gives precession around *j*(c) Projection of <u>l</u> on z is not constant
(d) Projection of <u>s</u> on z is not constant

 m_l and m_s are not good quantum numbers Replace by *j* and m_j

Oxford Physics: 3rd Year, Atomic Physics





 $\langle n, l, s, j, m_j | \underline{\hat{s}} \cdot \underline{\hat{l}} | n, l, s, j, m'_j \rangle = 0$ unless j = j' and $m_j = m'_j$

$$\langle n, l, s, j, m_j | \underline{\hat{s}} \cdot \underline{\hat{l}} | n, l, s, j, m_j \rangle = \frac{1}{2} \{ j(j+1) - l(l+1) - s(s+1) \} \hbar^2$$

$$-\underline{\mu}_{s} \cdot \underline{B} \propto \frac{1}{r} \frac{\partial U(r)}{\partial r} \underline{\hat{s}} \cdot \underline{\hat{l}} \qquad \sim \beta_{n,l} \times \langle \frac{1}{2} \{ \underline{j}^{2} - \underline{l}^{2} - \underline{s}^{2} \} \rangle$$

Using basis states: $|n, l, s, j, m_j\rangle$ to find expectation value:

The spin-orbit energy is:

$$\Delta E = \beta_{n,l} \times (1/2) \{ j(j+1) - l(l+1) - s(s+1) \}$$

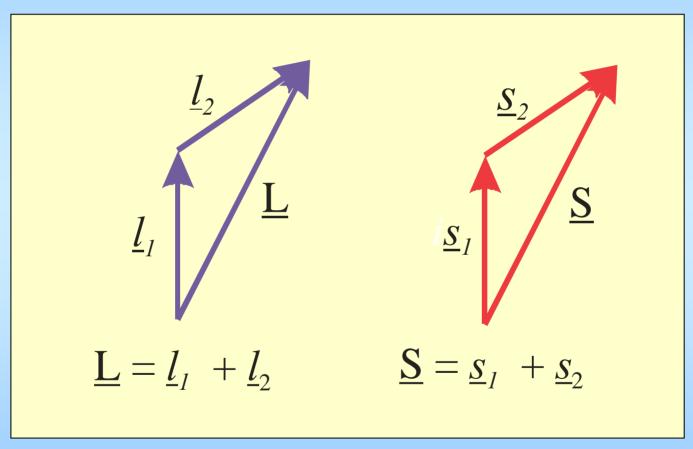
$$\Delta E = \beta_{n,l} \mathbf{x} (1/2) \{ j(j+1) - l(l+1) - s(s+1) \}$$

Sodium 3s: n = 3, l = 0,no effect **3p:** n = 3, l = 1, $s = \frac{1}{2}$, $-\frac{1}{2}$, $j = \frac{1}{2}$ or $\frac{3}{2}$ $\Delta E(1/2) = \beta_{3p} \mathbf{x} (-1); \quad \Delta E(3/2) = \beta_{3p} \mathbf{x} (1/2)$ j = 3/2 | 2j + 1 = 4 | 1/2 3p (no spin-orbit) j = 1/2 |2j + 1 = 2 |-1|

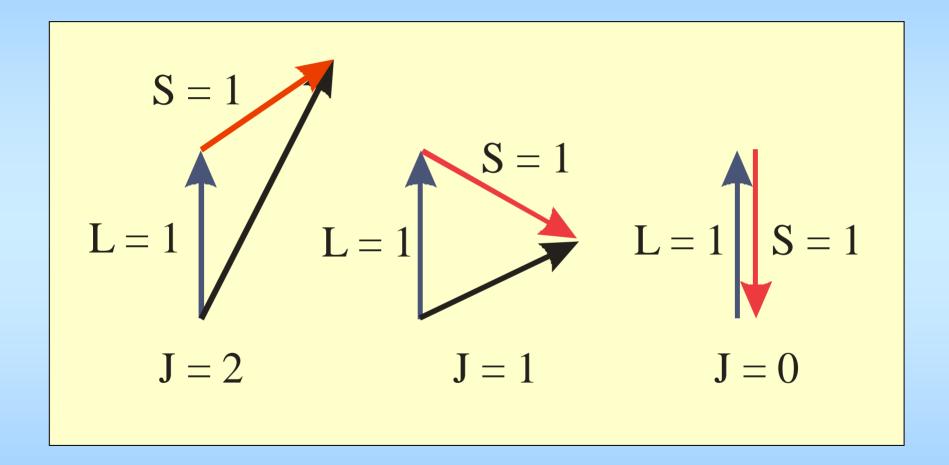
Lecture 4

- Two-electron atoms: the residual electrostatic interaction
- Adding angular momenta: LS-coupling
- Symmetry and indistinguishability
- Orbital effects on electrostatic interaction
- Spin-orbit effects

Coupling of $\underline{l}_{\underline{i}}$ and \underline{s} to form \underline{L} and \underline{S} : Electrostatic interaction dominates



Coupling of <u>L</u> and <u>S</u> to form <u>J</u>



Magnesium: "typical" 2-electron atom

Mg Configuration:

 $1s^{2}2s^{2}2p^{6}3s^{2}$

 $1s^{2}2s^{2}2p^{6}3s$

Na Configuration:

"Spectator" electron in Mg

Mg energy level structure is like Na but levels are more strongly bound

Oxford Physics: 3rd Year, Atomic Physics

Residual electrostatic interaction

$$\hat{H}_1 = -\sum_i \frac{Ze^2}{4\pi\epsilon_0 r_i} + \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}} - \sum_i U(r_i)$$

3s4s state in Mg: Zero-order wave functions

$$|\psi_1(3s)\psi_2(4s)\rangle$$

Perturbation energy:

$$\Delta E_1 \neq \langle \psi_1(3s)\psi_2(4s) | \hat{H}_1 | \psi_1(3s)\psi_2(4s) \rangle$$
Degenerate states

Linear combination of zero-order wave-functions

$$\phi_1 = \frac{1}{\sqrt{2}} \left(\psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s) \right)$$

$$\phi_2 = \frac{1}{\sqrt{2}} \left(\psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s) \right)$$

Off-diagonal matrix elements:

$$\frac{1}{2} \langle \psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s) \rangle$$

$$1 \uparrow \qquad 2 \uparrow \qquad 3 \uparrow \qquad 4 \uparrow$$

Off-diagonal matrix elements:

$$\frac{1}{2} \langle \psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s) \rangle$$

$$1 \uparrow \qquad 2 \uparrow \qquad 3 \uparrow \qquad 4 \uparrow$$

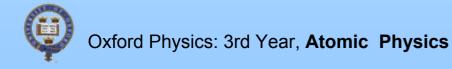
$$1 \times 3 = \langle \psi_1(3s)\psi_2(4s) | V | \psi_1(3s)\psi_2(4s) \rangle = \mathbf{J}$$

$$2 \times 4 = -\langle \psi_1(4s)\psi_2(3s) | V | \psi_1(4s)\psi_2(3s) \rangle = -\mathbf{J}$$

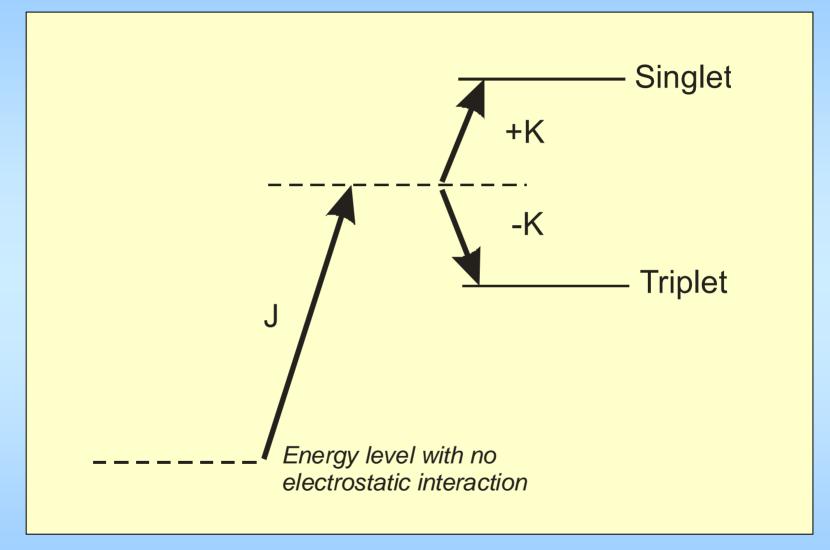
$$2 \times 3 = \langle \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) \rangle = K$$

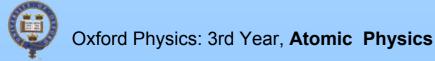
$$1 \times 4 = -\langle \psi_1(3s)\psi_2(4s) | V | \psi_1(4s)\psi_2(3s) \rangle = -\mathbf{K}$$

Therefore
$$\langle \phi_1 | V | \phi_2 \rangle = 0$$
 as required!

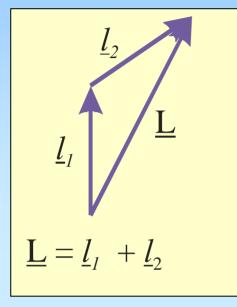


Effect of Direct and Exchange integrals

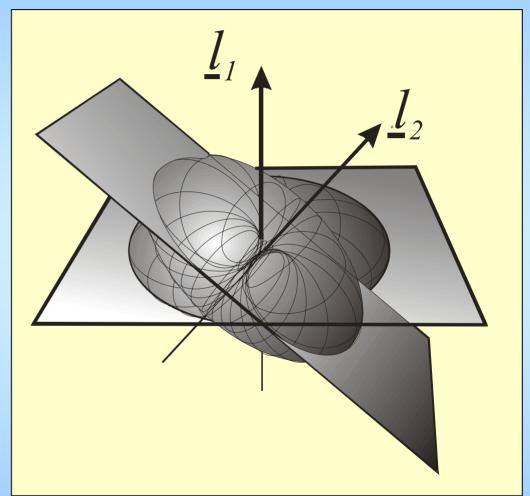




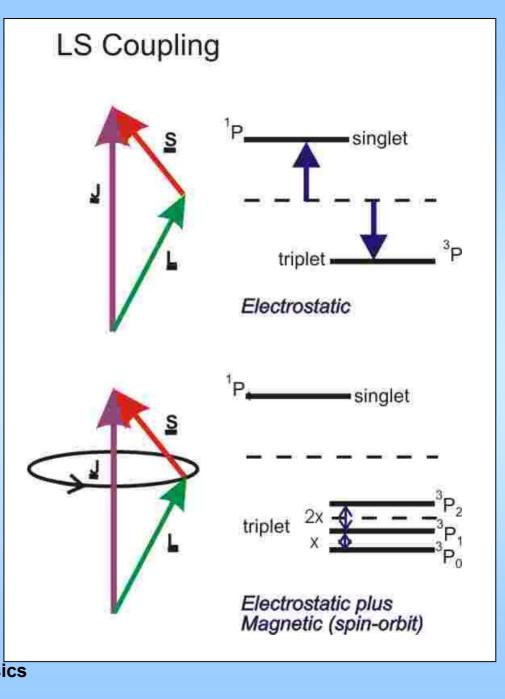
Orbital orientation effect on electrostatic interaction

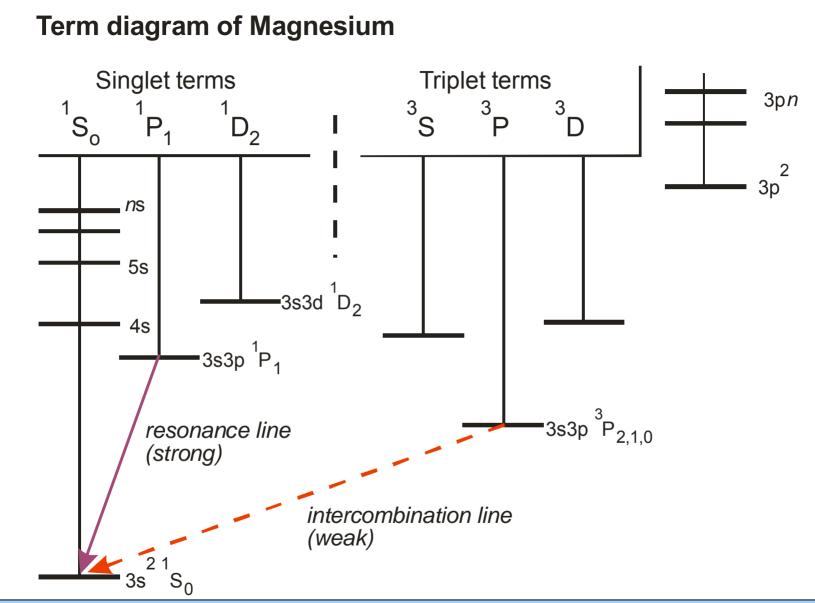


Overlap of electron wavefunctions depends on orientation of orbital angular momentum: so electrostatic interaction depends on <u>L</u>



Residual Electrostatic and Spin-Orbit effects in LS-coupling





The story so far: *Hierarchy of interactions*

Central Field configuration, $n_1 l_1 n_2 l_2 \dots$ Residual Electrostatic \rightarrow Terms, $L = S, P, D \dots$ Spin-Orbit \rightarrow Level, $J = |L - S| \rightarrow L + S$

H₃: Nuclear Effects on atomic energy H₃ << H₂ << H₁ << H₀

Oxford Physics: 3rd Year, Atomic Physics

Lecture 5

- Nuclear effects on energy levels
 - Nuclear spin
 - addition of nuclear and electron angular momenta
- How to find the nuclear spin
- •lsotope effects:
 - effects of finite nuclear mass
 - effects of nuclear charge distribution
 - Selection Rules

Nuclear effects in atoms

Nucleus:

Corrections

- stationary Nuclear spin \rightarrow magnetic dipole interacts with electrons
- infinite mass orbits centre of mass with electrons
- point charge spread over
 - nuclear volume

Nuclear Spin interaction

Magnetic dipole ~ angular momentum

$$\mu = -\gamma \underline{\lambda} \hbar$$

$$\mu_{\underline{l}} = -g_{l} \mu_{\underline{B}} \underline{l} \qquad \mu_{\underline{s}} = -g_{\underline{s}} \mu_{\underline{B}} \underline{s}$$

$$\mu_{\underline{I}} = -g_{\underline{I}} \mu_{\underline{N}} \underline{I}$$

$$g_{\underline{I}} \sim 1 \qquad \mu_{\underline{N}} = \mu_{\underline{B}} \times m_{\underline{e}} / m_{\underline{P}} \sim \mu_{\underline{B}} / 2000$$

Perturbation energy:

$$\overset{\mathbf{A}}{\mathbf{H}}_{3} = - \underline{\mu}_{I} \cdot \underline{B}_{el}$$

$$\hat{H}_3 = -\underline{\hat{\mu}}_I \cdot \underline{\hat{B}}_{\rm el}$$

Magnetic field of electrons: Orbital and Spin

Closed shells: zero contribution s orbitals: largest contribution – short range $\sim 1/r^3$ l > 0, smaller contribution – neglect

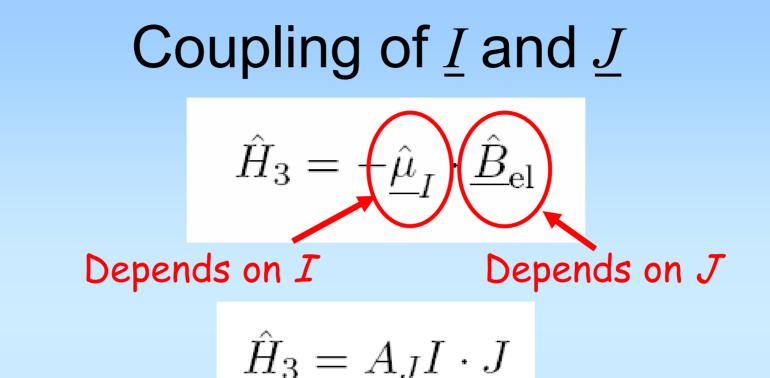
$$B_{\rm el} \sim \frac{\mu_0}{4\pi} \mu_B \left\langle \frac{1}{r^3} \right\rangle.$$
$$B_{\rm el} \sim \frac{\mu_0}{4\pi} \frac{\mu_B}{a_0^3} \sim 6 \mathrm{T}$$

$$\hat{H}_3 = -\underline{\hat{\mu}}_I \cdot \underline{\hat{B}}_{el}$$

$$\underline{B}_{el} = (scalar quantity) \times \underline{J}$$

Usually dominated by spin contribution in s-states:

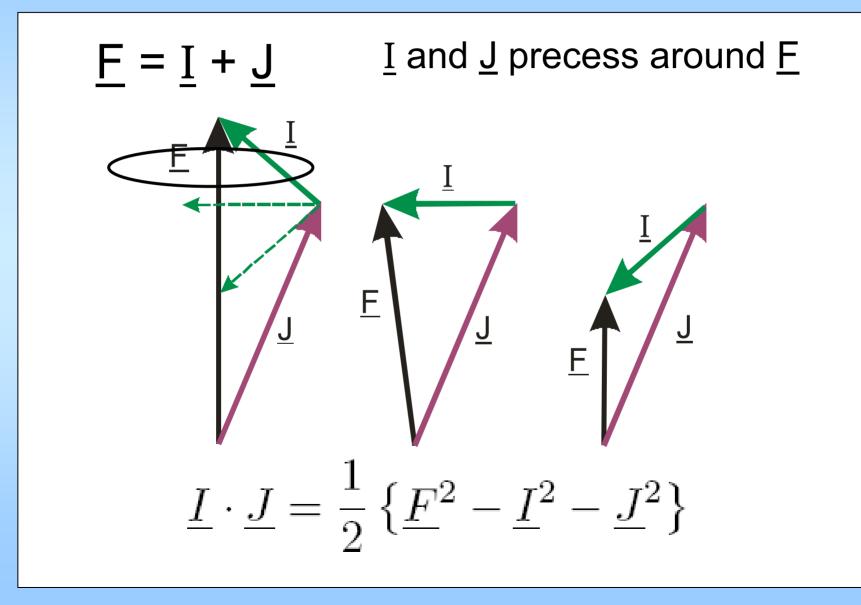
Fermi "contact interaction". Calculable only for Hydrogen in ground state, 1s



Nuclear spin interaction energy:

$$\Delta E = A_J \left\langle \underline{\hat{I}} \cdot \underline{\hat{J}} \right\rangle$$
empirical
Expectation value

Vector model of nuclear interaction



Hyperfine structure

$$\begin{array}{ll} \text{Hfs interaction energy:} & \Delta E = A_J \left\langle \underline{\hat{I}} \cdot \underline{\hat{J}} \right\rangle \\ \text{Vector model result:} & \underline{I} \cdot \underline{J} = \frac{1}{2} \left\{ \underline{F}^2 - \underline{I}^2 - \underline{J}^2 \right\} \\ \text{Hfs energy shift:} \\ & \Delta E = \frac{A_J}{2} \left\{ F(F+1) - I(I+1) - J(J+1) \right\} \end{array}$$

Hfs interval rule:

$$\Delta E_{F'} = \Delta E(F') - \Delta E(F'-1) \sim A_J F'$$

Finding the nuclear spin, I

- Interval rule finds F, then for known $J \rightarrow I$
- Number of spectral lines
 (2I + 1) for J > I, (2J + 1) for I > J
- Intensity

Depends on statistical weight (2F + 1) finds F, then for known $J \rightarrow I$

Isotope effects

reduced mass

 $E_n \sim \frac{Z^2 e^4 m_r}{2\hbar^2 n^2}$

Orbiting about Fixed nucleus, *infinite mass*

Orbiting about centre of mass

Isotope effects

reduced mass

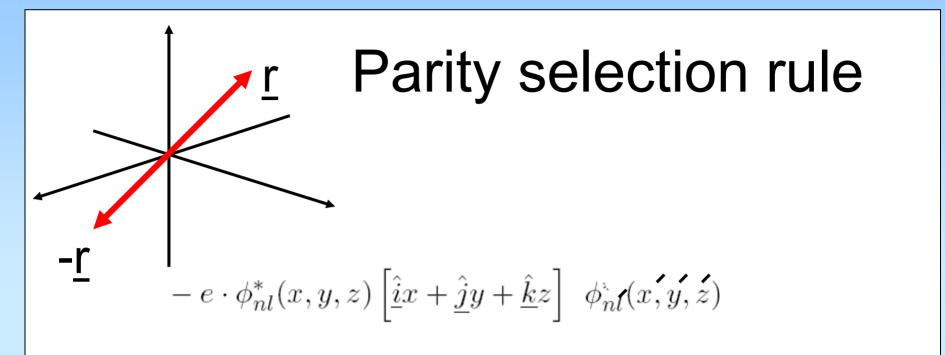
 $E_n \sim \frac{Z^2 e^4 m_r}{2\hbar^2 n^2}$

Orbiting about Fixed nucleus, *infinite mass*

Orbiting about centre of mass

Lecture 6

- Selection Rules
- Atoms in magnetic fields
 - basic physics; atoms with no spin
 - atoms with spin: anomalous Zeeman Effect
 - polarization of the radiation



N.B. Error in notes eqn (161)

Parity
$$(-1)^l$$
 must change
 $\Delta l = \pm 1$

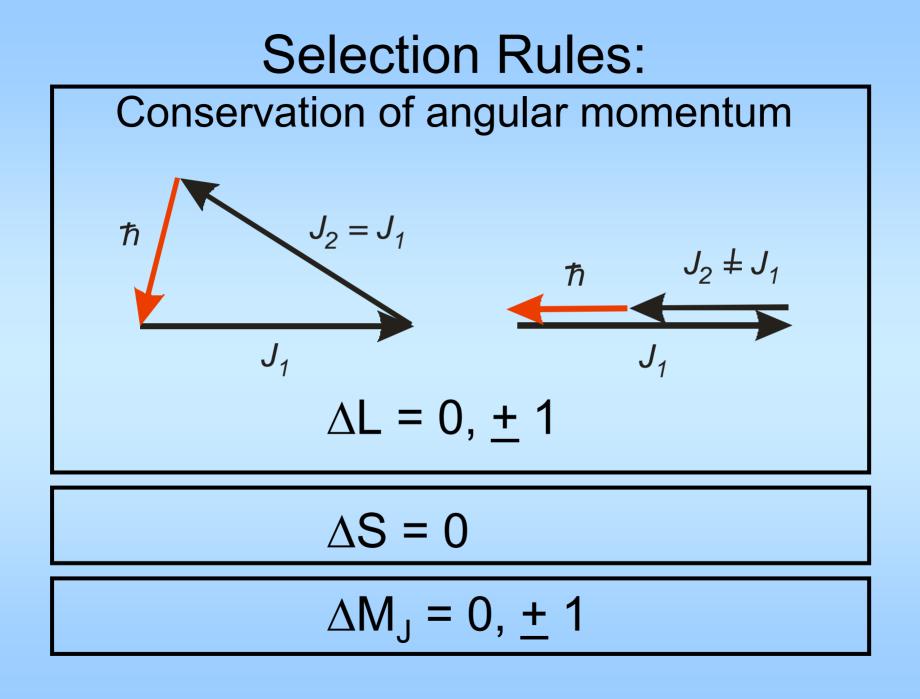
Configuration

$$\left\langle \psi_1(1s)\psi_2(2p)\right|\underline{r}_1+\underline{r}_2\left|\psi_1(3p)\psi_2(3d)\right\rangle$$

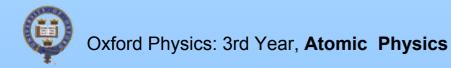
 $= \langle \psi_1(1s) | \underline{r}_1 | \psi_1(3p) \rangle \times \langle \psi_2(2p) | \psi_2(3d) \rangle + \langle \psi_2(2p) | \underline{r}_2 | \psi_2(3d) \rangle \times \langle \psi_1(1s) | \psi_1(3p) \rangle$ = 0

Only one electron "jumps"

$$\Delta n = \text{anything}$$
$$\Delta l = \pm 1$$



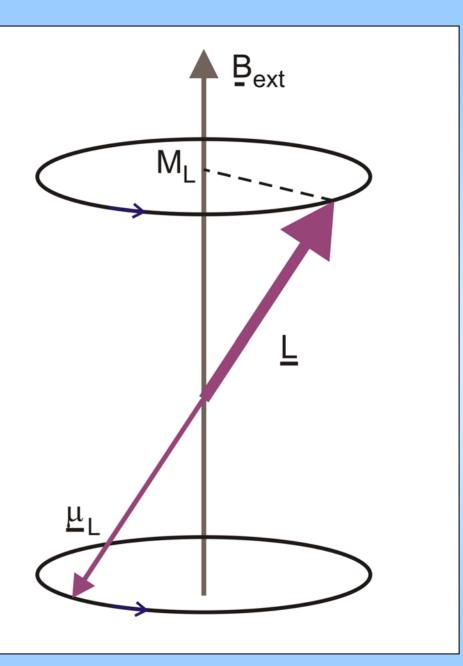
Atoms in magnetic fields



Effect of B-field on an atom with no spin

Interaction energy -Precession energy:

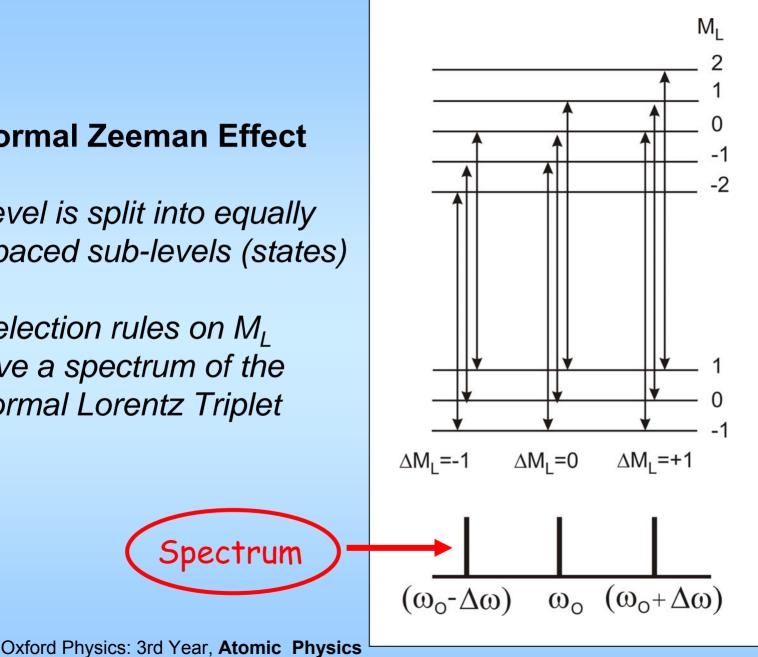
$$\Delta E_{\mathbf{Z}} = -\underline{\mu}_{L} \cdot \underline{B}_{\text{ext}}$$



Normal Zeeman Effect

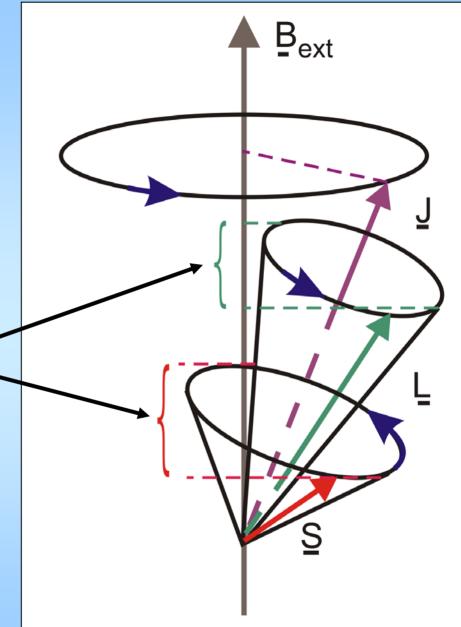
Level is split into equally Spaced sub-levels (states)

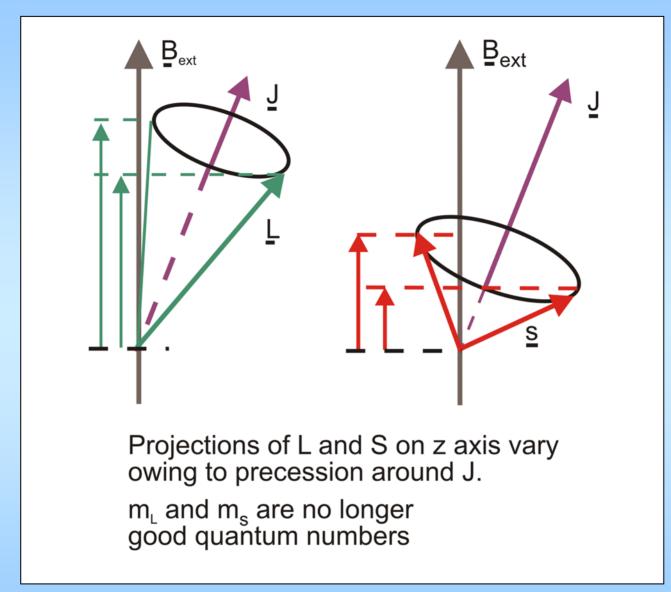
Selection rules on M₁ give a spectrum of the normal Lorentz Triplet

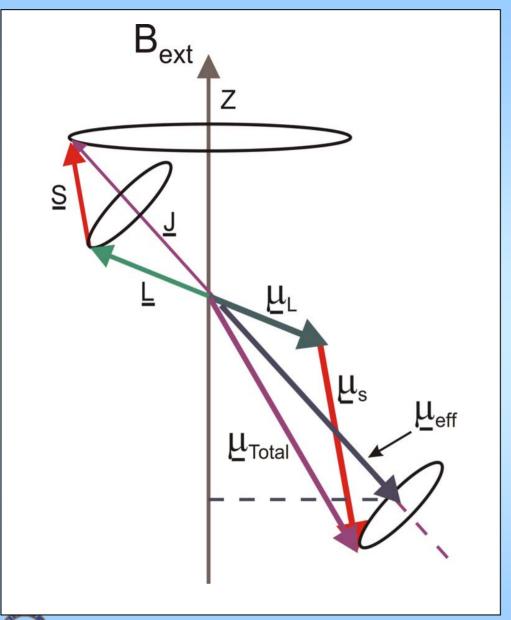


Effect of B-field on an atom with spin-orbit coupling

Precession of <u>L</u> and <u>S</u> around the resultant <u>J</u> leads to variation of \leq projections of <u>L</u> and <u>S</u> on the field direction







Total magnetic moment does not lie along axis of <u>J</u>.

Effective magnetic moment does lie along axis of \underline{J} , hence has constant projection on B_{ext} axis

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

Perturbation Calculation of B_{ext} effect on spin-orbit level

Interaction energy

$$\hat{H}_{\text{mag}} = -\underline{\mu}_{\text{atom}} \cdot \underline{B}_{\text{ext}}$$

Effective magnetic moment

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

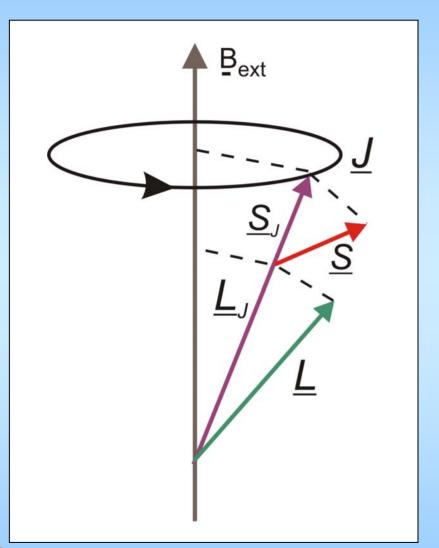
Perturbation Theory: expectation value of energy

$$\Delta E_{\rm AZ} = g_J \mu_B \left\langle \underline{\hat{J}} \cdot \underline{\hat{B}}_{\rm ext} \right\rangle$$

Energy shift of M₁ level

$$\Delta E_{\rm AZ} = g_J \mu_B \underline{B}_{\rm ext} M_J$$

Vector Model Calculation of B_{ext} effect on spin-orbit level



Projections of \underline{L} and \underline{S} on \underline{J} are given by

$$\frac{|\underline{L} \cdot \underline{J}| \underline{J}|}{|\underline{J}|^2} = \underline{L}_J$$
$$\frac{|\underline{S} \cdot \underline{J}| \underline{J}}{|\underline{J}|^2} = \underline{S}_J$$

J

Vector Model Calculation of B_{ext} effect on spin-orbit level

$$\Delta E_{AZ} = g_L \mu_B \underline{L}_J \cdot \underline{B}_{ext} + g_S \mu_B \underline{S}_J \cdot \underline{B}_{ext}$$
$$= g_L \mu_B \frac{|\underline{L} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{ext} + g_S \mu_B \frac{|\underline{S} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{ext}$$

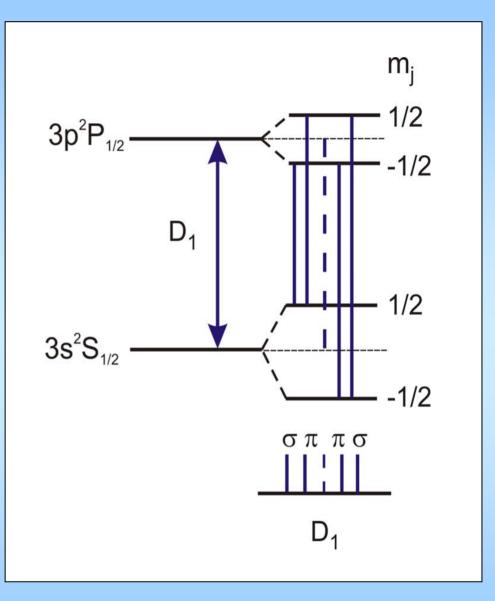
$$\Delta E_{AZ} = \mu_B \frac{\left[3\underline{J}^2 - \underline{L}^2 + \underline{S}^2\right]}{2|\underline{J}|^2} J_z B_{ext}$$

$$\Delta E_{AZ} = \frac{\left[3J(J+1) - L(L+1) + S(S+1)\right]}{2J(J+1)} \mu_B B_{ext} M_J$$
Perturbation Theory result
$$\Delta E_{AZ} = g_J \mu_B \underline{B}_{ext} M_J$$

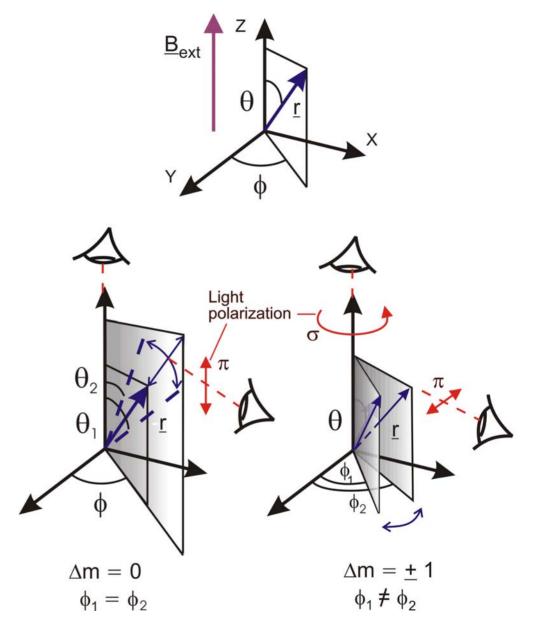
Perturbation Theory result

Anomalous Zeeman Effect:

 $3s^2S_{1/2} - 3p^2P_{1/2}$ in Na



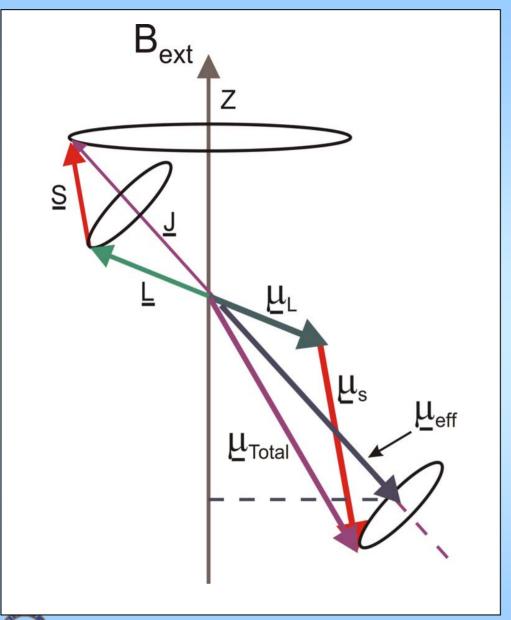
Polarization of Anomalous Zeeman components associated with ∆m selection rules



Lecture 7

- Magnetic effects on fine structure
 - Weak field
 - Strong field
- Magnetic field effects on hyperfine structure:
 - Weak field
 - Strong field

Summary of magnetic field effects on atom with spin-orbit interaction



Total magnetic moment does not lie along axis of <u>J</u>.

Effective magnetic moment does lie along axis of \underline{J} , hence has constant projection on B_{ext} axis

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

Perturbation Calculation of B_{ext} effect on spin-orbit level

Interaction energy

$$\hat{H}_{\text{mag}} = -\underline{\mu}_{\text{atom}} \cdot \underline{B}_{\text{ext}}$$

Effective magnetic moment

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

Perturbation Theory: expectation value of energy

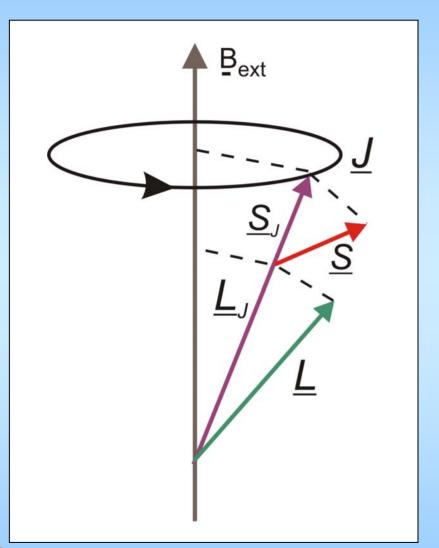
$$\Delta E_{\rm AZ} = g_J \mu_B \left\langle \underline{\hat{J}} \cdot \underline{\hat{B}}_{\rm ext} \right\rangle$$

Energy shift of M_J level

$$\Delta E_{\rm AZ} = g_J \mu_B \underline{B}_{\rm ext} M_J$$

What is
$$g_J$$
?

Vector Model Calculation of B_{ext} effect on spin-orbit level



Projections of \underline{L} and \underline{S} on \underline{J} are given by

$$\frac{|\underline{L} \cdot \underline{J}| \underline{J}|}{|\underline{J}|^2} = \underline{L}_J$$
$$\frac{|\underline{S} \cdot \underline{J}| \underline{J}}{|\underline{J}|^2} = \underline{S}_J$$

J

Vector Model Calculation of B_{ext} effect on spin-orbit level

$$\Delta E_{AZ} = g_L \mu_B \underline{L}_J \cdot \underline{B}_{ext} + g_S \mu_B \underline{S}_J \cdot \underline{B}_{ext}$$
$$= g_L \mu_B \frac{|\underline{L} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{ext} + g_S \mu_B \frac{|\underline{S} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{ext}$$

$$\Delta E_{AZ} = \mu_B \frac{\left[3\underline{J}^2 - \underline{L}^2 + \underline{S}^2\right]}{2|\underline{J}|^2} J_z B_{ext}$$

$$\Delta E_{AZ} = \frac{\left[3J(J+1) - L(L+1) + S(S+1)\right]}{2J(J+1)} \mu_B B_{ext} M_J$$
Perturbation Theory result
$$\Delta E_{AZ} = g_J \mu_B \underline{B}_{ext} M_J$$

Perturbation Theory result

Landé g-factor

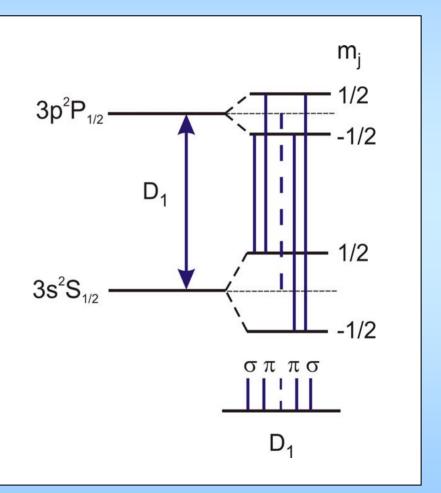
$$g_J = \frac{[3J(J+1) - L(L+1) + S(S+1)]}{2J(J+1)}$$

Anomalous Zeeman Effect:

 $3s^2S_{1/2} - 3p^2P_{1/2}$ in Na

$$g_J({}^2P_{1/2}) = 2/3$$

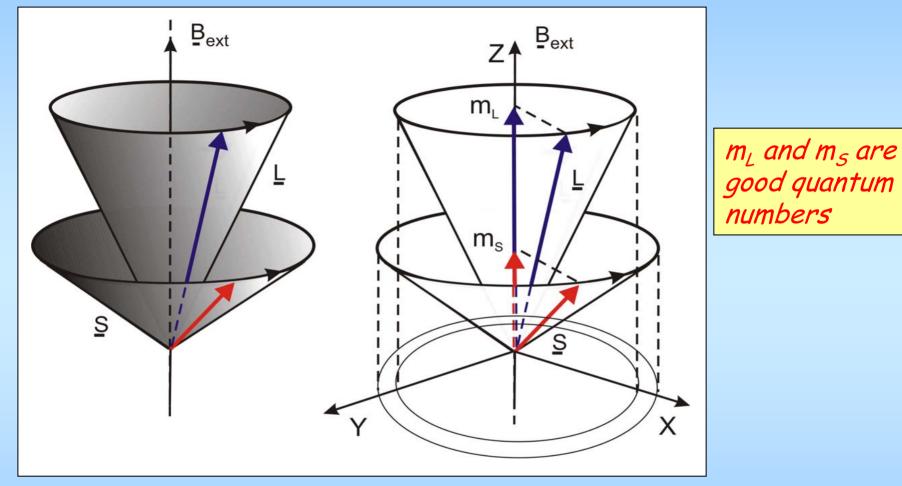
 $g_J({}^2S_{1/2}) = 2$



Strong field effects on atoms with spin-orbit coupling

Spin and Orbit magnetic moments couple more strongly to B_{ext} than to each other.

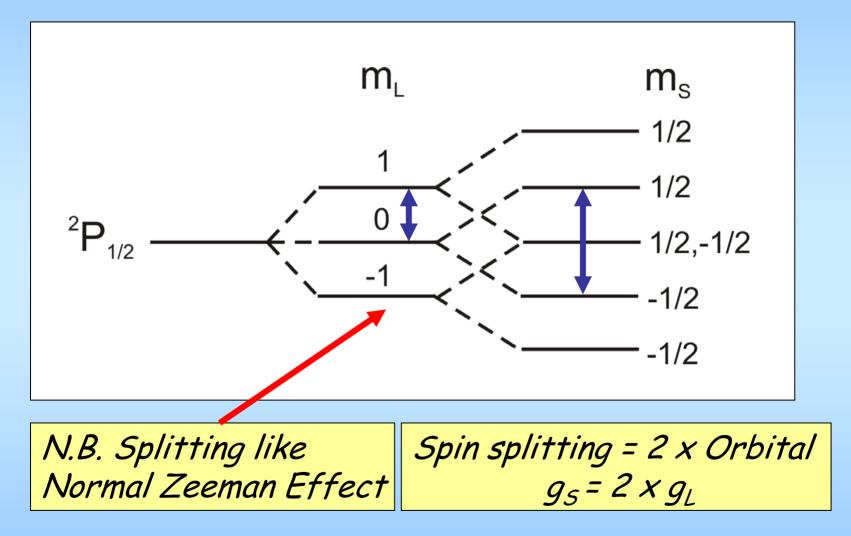
Strong field effect on <u>L</u> and <u>S</u>.

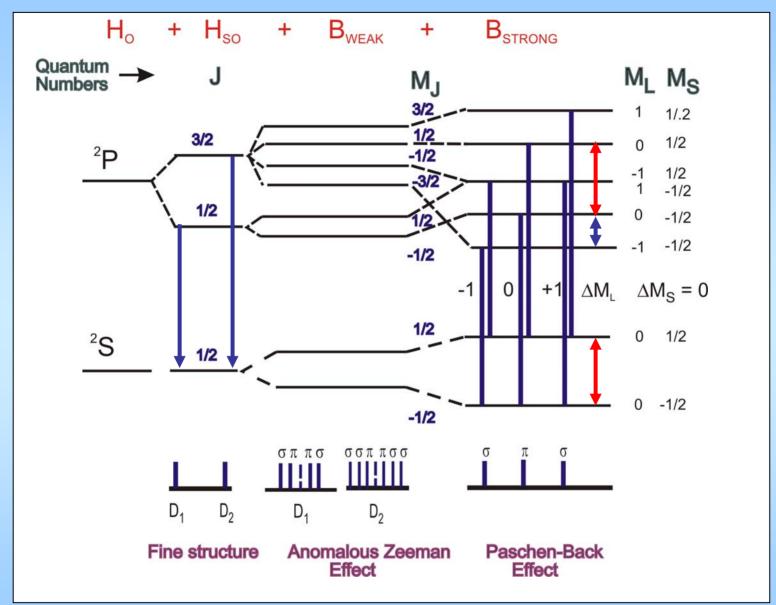


<u>L</u> and <u>S</u> precess independently around <u>B</u>_{ext}

Spin-orbit coupling is relatively insignificant

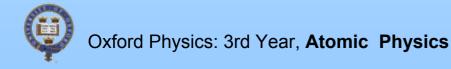
Splitting of level in strong field: Paschen-Back Effect



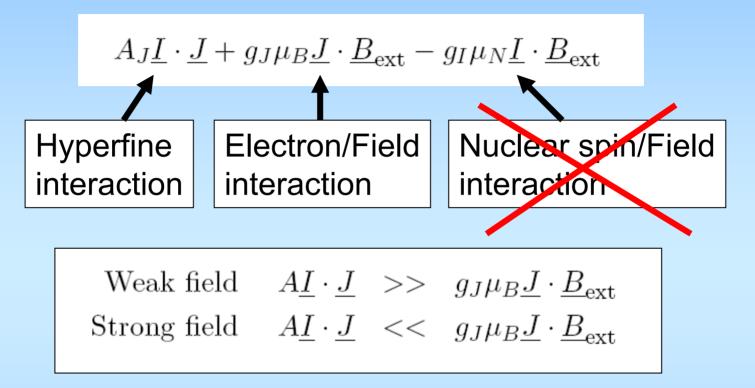


Oxford Physics: 3rd Year, Atomic Physics

Magnetic field effects on hyperfine structure



Hyperfine structure in Magnetic Fields

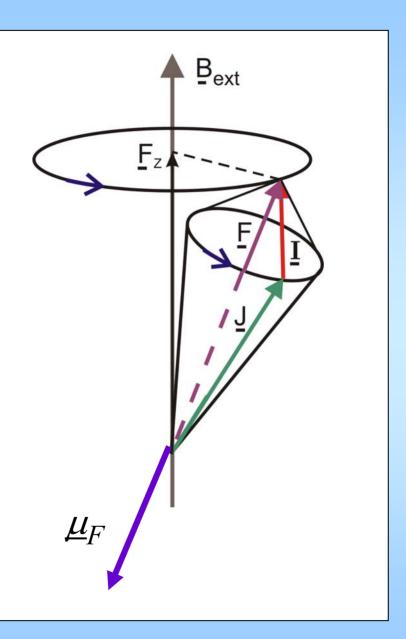


Weak field effect on hyperfine structure

<u>I</u> and <u>J</u> precess rapidly around <u>F</u>. <u>F</u> precesses slowly around B_{ext}

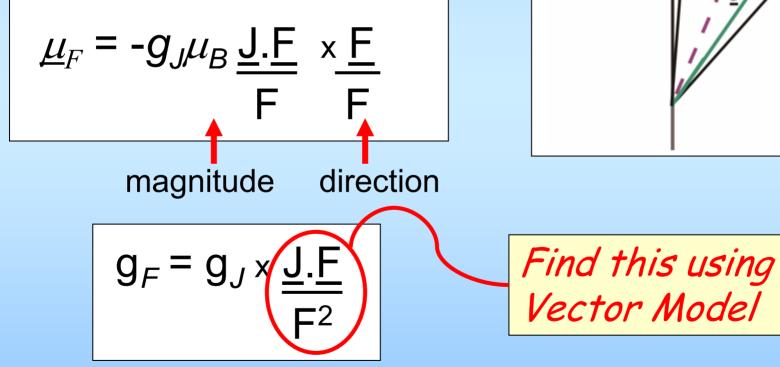
I, J, F and M_F are good quantum numbers

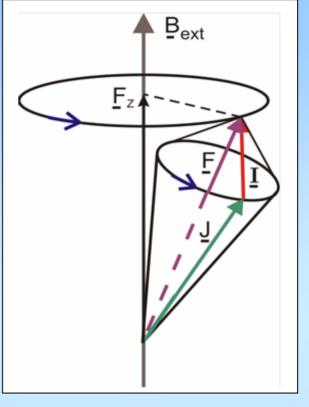
$$\underline{\mu}_F = -g_F \mu_B \underline{F}$$



$$\underline{\mu}_F = -g_F \mu_B \underline{F}$$

Only contribution to μ_F is component of μ_J along <u>F</u>





$$g_F = g_J \times \underline{J.F}$$

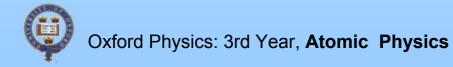
 F^2

$$E = I + J$$

$$I^{2} = E^{2} + J^{2} - 2J.E$$

$$J.E = \frac{1}{2} \{F(F+1) + J(J+1) - I(I+1)\}$$

$$g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)}$$



$$\Delta E = A_J \underline{I} \cdot \underline{J} + g_J \mu_B \underline{J} \cdot \underline{B}_{\text{ext}}$$

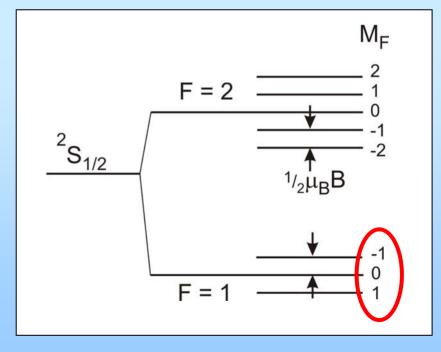
$$\Delta E = \frac{A_F}{2} \left\{ F(F+1) - J(J+1) - I(I+1) \right\} + g_F \mu_B \underline{F} \cdot \underline{B}_{\text{ext}}$$

- N.B. notes error eqn 207

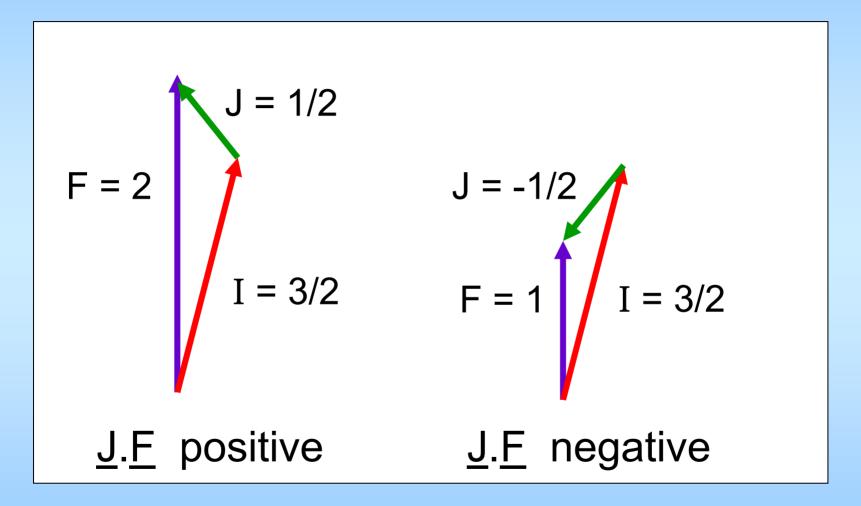
Each hyperfine level is split by g_F term

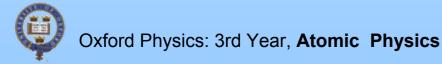
Ground level of Na:

.



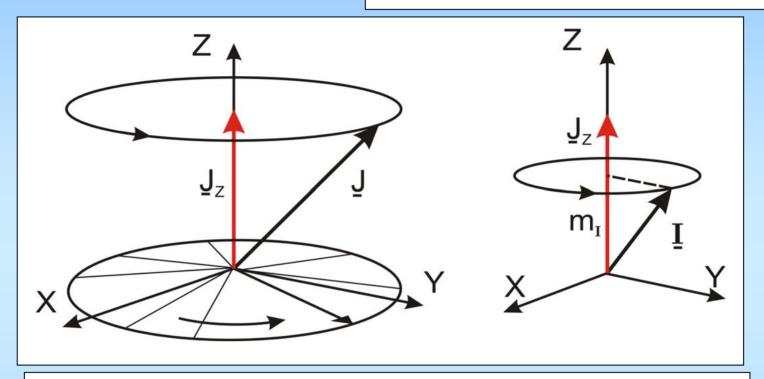
Sign inversion of g_F for F = 1 and F = 2





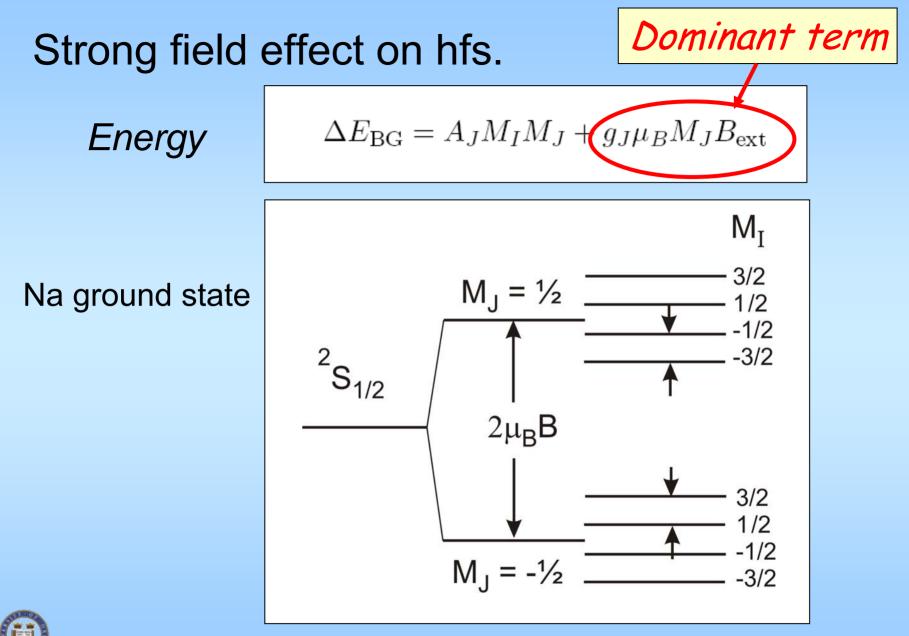
Strong field effect on hfs.

$$\Delta E = A_J \underline{I} \cdot \underline{J} + g_J \mu_B \underline{J} \cdot \underline{B}_{\text{ext}}$$



 $\frac{J}{I} \text{ precesses rapidly around } B_{ext} (z-axis)$ $\frac{I}{I} \text{ tries to precess around } \frac{J}{I} \text{ but can follow only the}$ time averaged component along z-axis i.e. J_z

So
$$A_J \underline{I}.\underline{J}$$
 term $\rightarrow A_J M_I M_J$

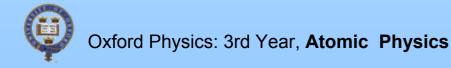


Strong field effect on hfs.

Energy:
$$\Delta E = A_J \underline{I} \cdot \underline{J} + g_J \mu_B \underline{J} \cdot \underline{B}_{ext}$$

- J precesses around field B_{ext}
- I tries to precess around J
- I precesses around what it can "see" of <u>J</u>: The z-component of <u>J</u>: \underline{J}_{Z}

$$\Delta E_{\rm BG} = A_J M_I M_J + g_J \mu_B M_J B_{\rm ext}$$



Magnetic field effects on hfs

<u>**Weak field:**</u> F, M_F are good quantum nos. Resolve μ_J along <u>F</u> to get effective magnetic moment and g_F

 $\Delta E(F,M_F) = g_F \mu_B M_F B_{ext}$

 \rightarrow "Zeeman" splitting of hfs levels

<u>Strong field:</u> M_I and M_J are good quantum nos.

<u>J</u> precesses rapidly around B_{ext} ; <u>I</u> precesses around z-component of J i.e. what it can "see" of <u>J</u>

$$\Delta E(M_J,M_I) = g_J \mu_B M_J B_{ext} + A_J M_I M_J$$

 \rightarrow hfs of "Zeeman" split levels

