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Atomic Physics:
• Astrophysics
• Plasma Physics
• Condensed Matter
• Atmospheric Physics
• Chemistry
• Biology

Technology
• Street lamps 
• Lasers
• Magnetic Resonance Imaging
• Atomic Clocks
• Satellite navigation: GPS
• etc 



Astrophysics



Condensed
Matter

Zircon mineral crystal

C60 Fullerene



Snow crystal



Lasers



Biology

DNA strand
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• How we study atoms:
– emission and absorption of light
– spectral lines

• Atomic orders of magnitude
• Basic structure of atoms

– approximate electric field inside atoms

Lecture 1



Oxford Physics: 3rd Year, Atomic  Physics

ψ1 ψ2

ψ( ) =  + t ψ ψ1 2

IΨ( )t I2

Ψ( )t Ψ( τ)t+

Oscillating charge cloud: Electric dipole

I   IΨ( + τ)t 2

Atomic radiation
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Spectral Line Broadening

Homogeneous  e.g.

Lifetime (Natural)

Collisional (Pressure)

Inhomogeneous  e.g.

Doppler (Atomic motion)

Crystal Fields
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Lifetime (natural) broadening

N( )t I( )ω

Time, t frequency  , ω

Intensity spectrumNumber of excited atoms

Exponential decay Lorentzian lineshape

Electric field amplitude

Fourier 
Transform

E(t)
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Lifetime (natural) broadening

N( )t I( )ω

Time, t frequency  , ω

Intensity spectrumNumber of excited atoms

Exponential decay Lorentzian lineshape

Electric field amplitude

E(t)
`τ ~ 10-8s `Δν ~ 108 Hz
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Collision (pressure) broadening

N( )t I( )ω

Time, t frequency  , ω

Intensity spectrumNumber of uncollided  atoms

Exponential decay Lorentzian lineshape
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Collision (pressure) broadening

N( )t I( )ω

Time, t frequency  , ω

Intensity spectrumNumber of uncollided  atoms

Exponential decay Lorentzian lineshape

`τc ~ 10-10s `Δν ~ 1010 Hz
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N(v) I( )ω

atomic speed, v frequency  , ω

Doppler broadeningDistribution of atomic speed

Maxwell-Boltzmann
distribution

Gaussian lineshape

Doppler (atomic motion) broadening

` Typical Δν ~ 109 Hz
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Atomic orders of magnitude

Atomic energy:  10-19 J → ~2 eV
Thermal energy:                1/40 eV
Ionization energy, H: 13.6 eV

109,737 cm-1

Atomic size, Bohr radius:   5.3 x 10-11m
Fine structure constant, α = v/c:  1/137
Bohr magneton, μB:     9.27 x 10-24 JT-1

= Rydberg Constant
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r

U(r)

1/r

~Z/r

“Actual” 
Potential

The 
Central 
Field
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~Z

Zeff

1

Radial position, r

Important
region





Lecture 2
• The Central Field Approximation:

– physics of wave functions (Hydrogen)

• Many-electron atoms
– atomic structures and the Periodic Table

• Energy levels
– deviations from hydrogen-like energy levels
– finding the energy levels; the quantum defect
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Schrödinger Equation (1-electron atom)

Hamiltionian for many-electron atom:

Individual electron potential
in field of nucleus

Electron-electron interaction

This prevents separation into
Individual electron equations
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Central potential in Hydrogen: 

V(r)~1/r,

separation of ψ into radial and angular functions:

ψ  = R(r)Ym
l(θ,φ)χ(ms)

Therefore we seek a potential for multi-electron atom 
that allows separation into 

individual electron wave-functions of this form
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Electron – Electron interaction term:

Treat this as composed of two contributions:
(a)a centrally directed part

(b)a non-central Residual Electrostatic part

+

e- e-
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Hamiltonian for Central Field Approximation

H1 = residual electrostatic interaction

Perturbation Theory Approximation:
H1 << Ho

^^

^

Central Field
Potential



Oxford Physics: 3rd Year, Atomic  Physics

Zero order Schrödinger Equation: 

H0 ψ = Ε0 ψ

H0 is spherically symmetric so equation is separable -
solution for individual electrons:

^

^

Radial    Angular   Spin
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Central Field Approximation:

What form does U(ri) take?



+

-

Hydrogen atom
Z+

--

-
-

-

- -

Many-electron atom

Z+

-

Z+

--

-
-

-

- -

Z+

-

Z protons+ (Z – 1) electrons

U(r) ~ 1/r

Z protons

U(r) ~ Z/r
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~Z

Zeff
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Radial position, r

Important
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Finding the Central Field

• “Guess” form of U(r)
• Solve Schrödinger eqn. → Approx ψ.
• Use approx ψ to find charge distribution
• Calculate Uc(r) from this charge distribution
• Compare Uc(r) with U(r) 
• Iterate until Uc(r) = U(r)
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Energy eigenvalues for Hydrogen:
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1

2

3
4

n

Energy

-13.6 eV

0
l = 0                 1                     2

s                  p                     d

H Energy level 
diagram

Note degeneracy in l
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Revision of Hydrogen solutions:

Product wavefunction:
Spatial x Angular function

Normalization

: Eigenfunctions of angular momentum operators

Eigenvalues
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|Y1
+( )|θ,φ

2

|Y1
0( )|θ,φ

2

Angular momentum orbitals
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|Y1
+( )|θ,φ

2

|Y1
0( )|θ,φ

2

Angular momentum orbitals

Spherically symmetric
charge cloud with filled
shell



Oxford Physics: 3rd Year, Atomic  Physics

2           4           6 2           4           6           8          10

2           4           6           8          10                                                           20

Zr a/ o Zr a/ o

Zr a/ o

Ground state, n = 1, = 0l 1st excited state, n = 2, l = 0

2nd excited state, 0n = 3, l = 

                             2n = 3, l = 

                       N = 2, l = 1

                             n = 3, l = 1

2 1.0

1 0.5

0.4

Radial wavefunctions
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Radial wavefunctions

• l = 0 states do not vanish at r = 0
• l ≠ 0 states vanish at r = 0,

and peak at larger r as l increases
• Peak probability (size) ~ n2

• l = 0 wavefunction has (n-1) nodes
• l = 1 has (n-2) nodes etc.
• Maximum l=(n-1) has no nodes

Electrons arranged in “shells” for each n
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The Periodic Table

Shells specified by n and l quantum numbers

Electron 
configuration
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The Periodic Table
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The Periodic Table
Rare gases

He: 1s2

Ne: 1s22s22p6

Ar: 1s22s22p63s23p6

Kr: (…) 4s24p6

Xe: (…..)5s25p6

Rn: (……)6s26p6
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The Periodic Table
Alkali metals

Li: 1s22s
Na: 1s22s22p63s
Ca: 1s22s22p63s23p64s
Rb: (…) 4s24p65s
Cs: (…..)5s25p66s
etc.
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White
light
source

Atomic
Vapour Spectrograph

Absorption
spectrum

Absorption spectroscopy
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Finding the Energy Levels

Hydrogen Binding Energy, Term Value Tn = R
n2

Many electron atom, Tn = R     .
(n – δ(l))2

δ(l) is the Quantum Defect
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Finding the Quantum Defect
1. Measure wavelength  of absorption lines

2. Calculate:   = 1/

3. "Guess" ionization potential, T(n ) i.e. Series Limit

4.  Calculate T(n ):  

      = T(n ) - T(n )

5.  Calculate:  n* or 

      T(n ) =      R /(n - )

 λ

ν

o

i

i o i

i

ν

δ(l)
2

 λ

δ(l)

Δ(l)

T(n )i

Quantum defect plot
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Lecture 3
• Corrections to the Central Field
• Spin-Orbit interaction
• The physics of magnetic interactions
• Finding the S-O energy – Perturbation Theory
• The problem of degeneracy
• The Vector Model (DPT made easy)
• Calculating the Spin-Orbit energy
• Spin-Orbit splitting in Sodium as example
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r

U(r)

1/r
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Corrections to the Central Field
• Residual electrostatic interaction:

• Magnetic spin-orbit interaction:

H2 = -μ.Borbit
^
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Magnetic spin-orbit interaction

^

• Electron moves in Electric field of nucleus,
so sees a Magnetic field Borbit

• Electron spin precesses in Borbit with energy:
-μ.B which is proportional to s.l

• Different orientations of s and l give different
total angular momentum j = l + s.

• Different values of j give different s.l so have 
different energy:

The energy level is split for l + 1/2
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Larmor Precession
Magnetic field B exerts a
torque on magnetic moment μ
causing precession of μ
and the associated 
angular momentum vector λ

The additional angular velocity
ω’ changes the angular velocity
and hence energy of the
orbiting/spinning charge

ΔE = - μ.B
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B parallel to l

μ parallel to s

Spin-Orbit interaction: Summary
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?

Perturbation energy

Radial integral

Angular momentum operator

How to find < s . l > using perturbation theory?^^



Oxford Physics: 3rd Year, Atomic  Physics

Perturbation theory with degenerate states
Perturbation Energy:

Change in wavefunction:
So won’t work if Ei = Ej
i.e. degenerate states.

We need a diagonal perturbation matrix, 
i.e. off-diagonal elements are zero

New 
wavefunctions:

New 
eignvalues:
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The Vector Model

Angular momenta represented by vectors:
l2, s2 and j2, and l, s j and with magnitudes:
l(l+1), s(s+1) and j(j+1). and 
l(l+1),  s(s+1) and j(j+1). 

Projections of vectors: 
l, s and j on z-axis
are ml, ms and mj

Constants of the Motion         Good quantum numbers 

lh mlh

z
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Summary of Lecture 3: Spin-Orbit coupling
• Spin-Orbit energy

• Radial integral sets size
of the effect.

• Angular integral < s . l > needs Degenerate Perturbation Theory

• New basis eigenfunctions:

• j and jz are constants of the motion

• Vector Model represents angular momenta as vectors

• These vectors can help identify constants of the motion

• These constants of the motion - represented by good quantum numbers

j
l

s
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lz

l

l

j j

s

s

sz

s

l

jj

( a )i i

( d )I i

( b )i i

( c )i i

Z

Z

Z

Z

(a) No spin-orbit
coupling

(b) Spin–orbit coupling
gives precession 
around j

(c) Projection of l on z
is not constant

(d) Projection of s on z
is not constant

ml and ms are not good 
quantum numbers
Replace by j and mj

Fixed in
space
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Vector model defines:

j
l

s
Vector triangle

Magnitudes
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Using basis states:  | n, l, s, j, mj › to find expectation value:

The spin-orbit energy is:

ΔE = βn,l x (1/2){j(j+1) – l(l+1) – s(s+1)}

∼  βn,l x ‹ ½ { j2 – l2 – s2 } ›
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ΔE = βn,l x (1/2){j(j+1) – l(l+1) – s(s+1)}

Sodium
3s: n = 3, l = 0, no effect

3p: n = 3,  l = 1,  s = ½, -½,  j = ½ or  3/2

ΔE(1/2) = β3p x ( - 1);     ΔE(3/2) = β3p x (1/2)

j = 3/2

j = 1/2

3p 
(no spin-orbit)

2j + 1 = 4

2j + 1 = 2

1/2

-1
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• Two-electron atoms:
the residual electrostatic interaction

• Adding angular momenta: LS-coupling
• Symmetry and indistinguishability
• Orbital effects on electrostatic interaction
• Spin-orbit effects 

Lecture 4
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Coupling of li and s to form L and S:
Electrostatic interaction dominates

l1 is1

l2 s2

L S

L =   +  l l1 2 S =   +  s s1 2
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L = 1

S = 1

S = 1

S = 1

L = 1 L = 1

J = 2                   J = 1                J = 0

Coupling of L and S to form J



Na Configuration:
1s22s22p63s

Oxford Physics: 3rd Year, Atomic  Physics

Magnesium: “typical” 2-electron atom

Mg Configuration:
1s22s22p63s2

“Spectator” electron in Mg

Mg energy level structure is like Na 
but levels are more strongly bound
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Residual electrostatic interaction

3s4s state in Mg:
Zero-order wave functions

Perturbation energy:

?

Degenerate states
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Linear combination of zero-order wave-functions

Off-diagonal matrix elements:
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Off-diagonal matrix elements:

Therefore as required!
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Energy level with no 
electrostatic interaction

J

+K

-K

Singlet

Triplet

Effect of Direct and Exchange integrals
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l2

l1

Orbital orientation effect on electrostatic interaction

Overlap of electron
wavefunctions
depends on orientation
of orbital angular momentum:
so electrostatic interaction 
depends on L

l1

l2

L

L =   +  l l1 2
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Residual Electrostatic 
and 
Spin-Orbit effects 
in LS-coupling
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1 1 1 3 3 3
S P D S P Do 21

3s  S
2 1

0

3s3p P
1

1

3s3p P
3

2,1,0

3s3d D
1

2
4s

5s

ns
3p

2

3pn

intercombination line
(weak)

resonance line
(strong)

Term diagram of Magnesium

Singlet terms                             Triplet terms
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HO
H1
H2

H3: Nuclear Effects on atomic energy

H3 << H2 << H1 << HO

The story so far:
Hierarchy of interactions



Lecture 5
• Nuclear effects on energy levels

– Nuclear spin
– addition of nuclear and electron angular  
momenta

• How to find the nuclear spin
•Isotope effects:

– effects of finite nuclear mass
– effects of nuclear charge distribution

• Selection Rules



Nuclear effects in atoms

Nucleus:
• stationary

• infinite mass

• point

Corrections

Nuclear spin → magnetic dipole 
interacts with electrons

orbits centre of mass with 
electrons

charge spread over 
nuclear volume



Nuclear Spin interaction

Magnetic dipole ~ angular momentum
μ = - γλħ

μl = - gl μBl μs = - gsμΒs
μΙ = - gIμΝI

gI ~ 1 μΝ = μΒ x me/mP ~ μΒ / 2000

Perturbation energy:

Η3 = − μΙ . Bel
^



Magnetic field of electrons: Orbital and Spin
Closed shells: zero contribution
s orbitals: largest contribution – short range ~1/r3

l > 0, smaller contribution - neglect

Bel



Bel = (scalar quantity) x J

Usually dominated by spin contribution in s-states:

Fermi “contact interaction”. 
Calculable only for Hydrogen in ground state, 1s



Coupling of I and J

Depends on I Depends on J

Nuclear spin interaction energy:

empirical Expectation value



Vector model of nuclear interaction

F

F

F

I

I
I

JJJ

I and J precess around FF = I + J



Hyperfine structure

Hfs interaction energy:

Vector model result:

Hfs energy shift:

Hfs interval rule:



Finding the nuclear spin, I

• Interval rule – finds F, then for known J → I

• Number of spectral lines 
(2I + 1) for J > I,   (2J + 1) for I > J

• Intensity
Depends on statistical weight (2F + 1)
finds F, then for known J → I



Isotope effects
reduced mass

Orbiting about
centre of mass

Orbiting about
Fixed nucleus, 
infinite mass

+



Isotope effects
reduced mass

Orbiting about
centre of mass

Orbiting about
Fixed nucleus, 
infinite mass

+



Lecture 6
• Selection Rules 

• Atoms in magnetic fields

– basic physics; atoms with no spin
– atoms with spin: anomalous Zeeman Effect
– polarization of the radiation



Parity selection rule

Parity (-1)l must change

Δl = + 1

N.B. Error in notes eqn (161)

-r

r



Configuration

Only one electron “jumps”



Selection Rules:
Conservation of angular momentum

h
h

J1 J1

J2 = J1 
J2 = J1 

ΔL = 0, + 1

ΔS = 0

ΔMJ = 0, + 1
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Atoms in magnetic fields
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Effect of B-field
on an atom 
with no spin

Interaction energy -
Precession energy:
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Normal Zeeman Effect

Level is split into equally
Spaced sub-levels (states)

Selection rules on ML
give a spectrum of the
normal Lorentz Triplet

Spectrum
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Effect of B-field
on an atom 
with spin-orbit coupling

Precession of L and S
around the resultant J
leads to variation of 
projections of L and S
on the field direction
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Total magnetic moment
does not lie along axis 
of J.

Effective magnetic moment
does lie along axis of J,
hence has constant 
projection on Bext axis



Oxford Physics: 3rd Year, Atomic  Physics

Interaction energy

Effective magnetic moment

Perturbation Theory:
expectation value of energy

Energy shift of MJ level

Perturbation Calculation of Bext effect on spin-orbit level
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Projections of L and S
on J are given by

Vector Model Calculation of Bext effect on spin-orbit level
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Vector Model Calculation of Bext effect on spin-orbit level

Perturbation Theory result
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Anomalous Zeeman Effect:

3s2S1/2 – 3p2P1/2 in Na
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Polarization of 
Anomalous Zeeman
components
associated with Δm
selection rules
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Lecture 7
• Magnetic effects on fine structure 

- Weak field 
- Strong field 

• Magnetic field effects on hyperfine structure:
- Weak field
- Strong field
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Summary of magnetic field 
effects on atom with 
spin-orbit interaction
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Total magnetic moment
does not lie along axis 
of J.

Effective magnetic moment
does lie along axis of J,
hence has constant 
projection on Bext axis
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Interaction energy

Effective magnetic moment

Perturbation Theory:
expectation value of energy

Energy shift of MJ level

Perturbation Calculation of Bext effect on spin-orbit level

What is gJ ?
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Projections of L and S
on J are given by

Vector Model Calculation of Bext effect on spin-orbit level
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Vector Model Calculation of Bext effect on spin-orbit level

Perturbation Theory result
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Anomalous Zeeman Effect:

3s2S1/2 – 3p2P1/2 in Na

gJ(2P1/2) = 2/3

gJ(2S1/2) = 2

Landé
g-factor
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Strong field effects on atoms 
with spin-orbit coupling

Spin and Orbit magnetic moments couple 
more strongly to Bext than to each other.
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Strong field effect on L and S. 

L and S precess independently around Bext
Spin-orbit coupling is relatively insignificant

mL and mS are 
good quantum
numbers
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Splitting of level in strong field: Paschen-Back Effect

N.B. Splitting like 
Normal Zeeman Effect

Spin splitting = 2 x Orbital 
gS = 2 x gL
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Magnetic field effects on 
hyperfine structure
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Hyperfine structure in Magnetic Fields

Hyperfine 
interaction

Electron/Field
interaction

Nuclear spin/Field
interaction 
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Weak field effect on
hyperfine structure

I and J precess
rapidly around F.
F precesses slowly
around Bext

I, J, F and MF 
are good quantum 
numbers

μF
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Only contribution to μF is 
component of μJ along F

μF = -gJμB J.F x F
F F

magnitude     direction

gF = gJ x J.F
F2

Find this using 
Vector Model
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gF = gJ x J.F
F2 F I

JF = I + J

I2 = F2 + J2 – 2J.F

J.F = ½{F(F+1) + J(J+1) – I(I+1)}



Oxford Physics: 3rd Year, Atomic  Physics

N.B. notes error eqn 207

ΔE = 

Each hyperfine level is split by gF term

Ground level of Na:

J = 1/2 ; I = 3/2 ; 
F = 1 or 2

F = 2: gF = ½  ;  
F = 1: gF = -½ 
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Sign inversion of gF for F = 1 and F = 2

I = 3/2

J = 1/2

F = 2

I = 3/2

J = -1/2

F = 1

J.F positive J.F negative
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Strong field effect on hfs.

J precesses rapidly around Bext (z-axis)
I tries to precess around J but can follow only the 

time averaged component along z-axis i.e. Jz

So AJ I.J term → AJ MIMJ

ΔE = 
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Strong field effect on hfs.

Na ground state

Energy

Dominant term
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ΔE = 

Strong field effect on hfs.

Energy:

J precesses around field Bext

I tries to precess around J

I precesses around what it can “see” of J:
The z-component of J: JZ
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Magnetic field effects on hfs

Weak field: F, MF are good quantum nos.
Resolve μJ along F to get effective magnetic moment and gF

ΔE(F,MF) = gFμBMFBext

→ “Zeeman” splitting of hfs levels

Strong field: MI and MJ are good quantum nos.
J precesses rapidly around Bext; 
I precesses around z-component of J i.e. what it can “see” of J

 ΔE(MJ,MI) = gJμBMJBext + AJMIMJ
 → hfs of “Zeeman” split levels
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