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1 Preliminaries

The problem of waves reflecting from a thin layer or a potential well (or a hill) comes up
in several areas. Examples include

1. Optics: electromagnetic waves incident on a piece of glass with a dielectric coating.

2. Quantum physics: de Broglie waves incident on a potential well or barrier.

3. Transmission lines: electrical signals passing between transmission lines of different
impedance.

The solution of this problem can seem quite difficult the first time you encounter it, but
it is not too bad if you adopt a good notation and learn how it is done. My aim here
is to guide the reader through this calculation in a way that I believe to be reasonably
intuitive, but ultimately to learn this you have to practice it yourself.

In the three examples listed above, in each case there are two properties of the waves
that are continuous at any given boundary:

1. Electric and magnetic field amplitudes E, H.

2. Wavefunction and its gradient ψ, (∂ψ/∂x).

3. Voltage and currrent V , I.

Also, in every case the continuous properties are related to one another in a simple way
in the case of a single travelling wave going in the positive x direction:
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1. If E = E0e
ikx then E = ZH where Z is the impedance. The impedance is a

property of the medium through which the waves are propagating. In the case of non-
absorbing dielectric media, the impedance is a positive real number (an expression
is provided in eqn (27)).

2. If ψ = Aeikx then (∂ψ/∂x) = ikψ.

3. If V = V0e
ikx then V = ZI where Z is the characteristic impedance of the transmis-

sion line (see eqn (37)).

Also, for a wave travelling in the opposite direction (towards negative x), the relationship
is similar but with a sign change:

1. If E = E0e
−ikx then E = −ZH.

2. If ψ = Ae−ikx then (∂ψ/∂x) = −ikψ.

3. If V = V0e
−ikx then V = −ZI.

It is useful to treat the de Broglie wave case by writing the relationship between
(∂ψ/∂x) and ψ for a positive-going wave as

−ih̄
(
∂ψ

∂x

)
=

1

Z
ψ (1)

where Z = (h̄k)−1. Then we can treat all three cases using the same equations, and Z is
real and positive in all cases when dealing with travelling waves (as opposed to evanescent
or expontially decaying waves).

2 Main calculation

The situation we want to analyse is summarised in the figure. The potential well or
dielectric layer extends from x = 0 to L and waves are incident from the left. We assign
an amplitude 1 to the incident waves, and use A,B,C,D for the amplitudes of waves in
the various regions moving in each direction. In other words, we are considering a solution
for the waving quantity (electric field or wavefunction or voltage) which takes the form

eik1x + Ce−ik1x for x < 0

Aeik2x +Be−ik2x for 0 < x < L

Deik3x for x > L. (2)

Note that we are allowing that the three regions may all have different properties, so the
wave vectors k1, k2, k3 can be different in all three regions.

Applying the continuity conditions at the boundary at x = 0 we find

1 + C = A+B (3)

1

Z1
(1− C) =

1

Z2
(A−B) (4)
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The second equation uses the fact that the second continuous physical quantity (H or
−ih̄(∂ψ/∂x) or I) is (1/Z) times the first for a right-going wave, and (−1/Z) times the
first for a left-going wave, and each region has its own impedance.

Applying the continuity conditions at the boundary at x = L we find

Aeik2L +Be−ik2L = Deik3L (5)

1

Z2

(
Aeik2L −Be−ik2L

)
=

1

Z3
Deik3L. (6)

The problem of studying reflection and transmission now reduces to the problem of
solving equations (3)–(6) for C,A,B,D.

Since the reflection probability is given simply by |C|2, it is best to make it our aim
to find C. The job is not too hard as long as we make a good choice of how to proceed.
The easiest thing to do to begin with is immediately elliminate D by taking the ratio of
eqn (5) to eqn (6):

Z2(Aα+B/α)

Aα−B/α
= Z3 (7)

where

α = eik2L. (8)

Introducing α here is useful to reduce clutter and thus get a clearer picture of what we
have got. Both α and Z2, Z3 are known constants. We can now solve eqn (7) for B/A.
After some easy algebra one finds

B

A
= α2Z3 − Z2

Z3 + Z2
. (9)

Now is a good point to pause and notice that this equation makes sense. It is in fact the
equation for reflection at a single interface, if the interface is located at x = L (which
leads to the phase factor α2). When Z3 = Z2 we find B = 0: this is right, because when
Z3 = Z2 there is no interface and thus no reflection at x = L.

The next step is to use eqns (3) and (4) to relate C to B/A. By taking the ratio of
eqn (3) with (4) we find

Z1(1 + C)

1− C
=

Z2(A+B)

A−B
(10)

= Z2
1 + r

1− r
(11)

where r = B/A. This can be solved for C. After a little algebra one finds

C =
Z2(1 + r)− Z1(1− r)

Z1(1− r) + Z2(1 + r)
. (12)

This can also be written

C =
Z2 − Z1 + r(Z2 + Z1)

Z2 + Z1 + r(Z2 − Z1)
(13)
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(it is a matter of taste which form one prefers). Of course the formula only looks simple
because we have bundled various factors into r, which is given by eqns (9) and (8):

r = e2ik2L
Z3 − Z2

Z3 + Z2
. (14)

We have now finished, in the sense that we have an expression for the reflection am-
plitude C, in terms of the given quantities Z1, Z2, Z3, k2, L. At interesting case is the case
of no reflection, C = 0. This happens when

Z2 − Z1 + r(Z2 + Z1) = 0 (15)

therefore

e2ik2L
Z3 − Z2

Z3 + Z2
=

Z1 − Z2

Z1 + Z2
. (16)

In order for this equation to be satisfied, the phase factor e2ik2L has to be real. There are
two ways that this can come about.

1. If k2L = nπ for integer n then e2ik2L = 1 and (16) is satisfied for

Z3 = Z1. (17)

2. If k2L = (n+ 1/2)π for integer n then e2ik2L = −1 and then by multiplying (16) by
(Z3 + Z2)(Z1 + Z2) one finds

(Z2 − Z3)(Z1 + Z2) = (Z1 − Z2)(Z3 + Z2). (18)

After multiplying out the brackets four terms cancel and one obtains

Z2
2 = Z1Z3. (19)

This is the condition for zero reflection in this case. It says that the middle layer
should have an impedance equal to the geometric mean of the other two impedances.

The first of the above two scenarios describes a half-wave layer between two media
of the same impedance, or, more generally two such media separated by a layer whose
thickness L is an integer multiple of λ/2, where (note) λ is the wavelength in the second
region λ = 2π/k2. This case is a standard example in quantum theory, with a beam of
particles incident on a square potential well.

The second of the above two scenarios describes a quarter-wave layer, or, more gener-
ally, with L an odd multiple of λ/4 and Z3 ̸= Z1. This case arises commonly in optics.
Lenses in cameras and spectacles are often coated with such a layer to provide an anti-
reflection coating. For a single layer it only works perfectly at a single wavelength in
the visible spectrum, but it also works to reduce reflection somewhat over a range of
wavelengths.

We will finish now with a few general comments. First, we studied the case of zero
reflection since this is an interesting and easily calculated case. For this case r is real.
Another moderately simple case is when r is pure imaginary. One then finds that the
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reflectivity is large when |r| is large. This happens when the impedances differ by a large
amount (as intuitively one might expect).

It is also worthy of note that we can write the expression for C (eqn (12)) in the form

C =
Zeff − Z1

Zeff + Z1
(20)

where

Zeff = Z2
1 + r

1− r
(21)

= Z2
Z3 + Z2 + α2(Z3 − Z2)

Z3 + Z2 − α2(Z3 − Z2)
. (22)

In this way of looking at things, we regard the whole structure to the right of x = 0 as a
single entity which presents an effective impedance to waves incident from the left. When
α2 = 1 one gets Zeff = Z3 and when α2 = −1 one gets Zeff = Z2

2/Z3. There is no reflection
when Zeff = Z1. For this reason the use of a suitably designed intermediate region to
prevent reflection is called ‘impedance matching’.

2.1 Impedance in the various scenarios

The expressions for impedance of the various types of waves we have mentioned go as
follows.

We already noted that for de Broglie waves the impedance is

Z =
1

h̄k
(23)

(c.f. eqn 1). For a wave/particle of energy E, the wavevector k is related to E and the
local potential energy V (x) by

h̄2k2

2m
= E − V. (24)

For electromagnetic waves in a dielectric, one has, from the 3rd and 4th Maxwell’s
equations,

kE = ωµH (25)

kH = ωϵE (26)

where ϵ = ϵ0ϵr is the permittivity of the medium, and µ = µ0µr is the permeability. Hence
one finds the phase velocity ω/k = (ϵµ)−1/2 and

Z =
ωµ

k
=

µ
√
ϵµ

=

√
µ

ϵ
. (27)

In terms of refractive index n, we write the phase velocity

ω

k
=
c

n
(28)

5



where c is the speed of light in vacuum. Thus we find

n =
√
ϵrµr (29)

and therefore

Z =
Z0µr
n

(30)

where Z0 = (µ0/ϵ0)
1/2 is the impedance of free space (value approximately 377 ohms).

For electric signals in a transmission line, one finds equations much like those for
electromagnetic waves. The equations relate the voltages and currents to the capacitance
and inductance per unit length of the transmission line. If one starts from ‘V = Q/C’ for
a capacitor, then it should not surprise us to find that voltage and current in the line are
related by

ωV =
kI

C
(31)

for a wave of frequency ω and wavevector k, where (note) C is not the capacitance but
the capacitance per unit length. The inductor equation meanwhile gives

kV = LωI (32)

where L is the inductance per unit length (not to be confused with the L we used previ-
ously). Solving these two equations, one finds

ω

k
=

1√
LC

(33)

and

Z =

√
L

C
(34)

In the case of coaxial cable, for example, one finds

C =
2πϵ

ln(b/a)
(35)

L =
µ ln(b/a)

2π
(36)

which gives LC = ϵµ and

Z =
1

2π

(
µ

ϵ

)1/2

ln(b/a) (37)

where a, b are the inner and outer radii. This is called the characteristic impedance of the
line. Typically coaxial cables are desgined to give either Z = 50 ohms or Z = 70 ohms. If
one wants to deliver electrical signals to a device of some other impedance Z3, then one
might insert, between the input coaxial cable and the device, a quarter-wave segment with
characteristic impedance Z =

√
Z1Z3 (eqn (19)).
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3 Transmission resonance and Fabry-Perot etalon

The case of zero reflectivity may be referred to as a ‘transmission resonance’, since then
the transmission coefficient as a function of wavelength has a peak. To investigate this,
we obtain T = 1− |C|2. Our starting point is eqn (13), which we write

C =
β + r

1 + βr
(38)

where

β =
Z2 − Z1

Z2 + Z1
. (39)

For the cases we have considered so far, β is real, but the derivation does not require the
impedances to be real, so we shall allow the possibility that one or more may be complex.
We find

|C|2 =
(
β + r

1 + βr

)(
β∗ + r∗

1 + β∗r∗

)
=

|β|2 + |r|2 + 2ℜ[βr∗]
1 + |β|2|r|2 + 2ℜ[βr]

(40)

so

T = 1− |C|2 = 1 + |β|2|r|2 − |β|2 − |r|2 + 2ℜ[β(r − r∗)]

1 + |β|2|r|2 + 2ℜ[βr]
(41)

This is true in general (we have not restricted to any particular choice of impedance or of
k2L).

Now let us treat the case Z3 = Z1. Then we have

r = −e2iϕβ (42)

where ϕ = k2L and therefore, as long as k2 is real,

T =
1 + |β|4 − 2|β|2 + 2ℜ[β(r − r∗)]

1 + |β|4 + 2ℜ[βr]
. (43)

Now let us consider further the case where β is real. In this case, ℜ[β(r− r∗)] = 0 and
ℜ[βr] = −β2 cos 2ϕ so we obtain

T =
(1− β2)2

1 + β4 − 2β2 cos 2ϕ
=

1

1 + 2β2

(1−β2)2
(1− cos 2ϕ)

. (44)

In optics this situation is called the Fabry-Perot etalon (and there exists a neat alternative
method of derivation based on summing a geometric series). In quantum physics it is called
a transmission resonance; examples occur for electrons passing through a gas (where the
atoms provide the scattering potential) and neutrons passing through an atomic nucleus.
T = 1 whenever cos 2ϕ = 1. Also, if β2 is close to 1 then for cos 2ϕ ̸= 1 the transmission is
small. Hence the transmission can swing between 1 and a small value as a function of ϕ.
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4 Quantum tunnelling and frustrated total internal reflec-
tion
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Another interesting case occurs when the waves do not propagate in the normal way
in the central region, because k2 is imaginary. Then in the region 0 < x < L the wave
takes the form

AeκL +Be−κL (45)

where κ = ik2 (with k2 imaginary so κ is real). In the case of electromagnetic waves, this
is the form of the solution for the electric field outside a glass surface when the waves
undergo total internal reflection. In the case of de Broglie waves, this happens when we
have a potential barrier whose height exceeds the energy of the incident wave/particles:
V2 > E. In this case h̄2κ2/2m = V2 − E. Note that this also implies that Z2 is pure
imaginary.

To find the behaviour in this situation, one can proceed from equation (38), keeping
in mind which quantities are complex, or start afresh. I will show both methods.

First, if we start the calculation afresh from the start, then the continuity conditions
at x = 0 and x = L now take the form

1 + C = A+B (46)

1

Z1
(1− C) =

1

Z2
(A−B) (47)

AeκL +Be−κL = Deik3L (48)

1

Z2

(
AeκL −Be−κL

)
=

1

Z3
Deik3L. (49)

We will make it our aim to find D. First we use the last two equations to get A and B in
terms of D. By adding and subtracting one finds:

2AeκL = Deik3L(1 + Z2/Z3), (50)

2Be−κL = Deik3L(1− Z2/Z3). (51)

Next we eliminate C from (46) and (47):

2 = A(1 + Z1/Z2) +B(1− Z1/Z2). (52)
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Then by substituting (50) and (51) into this we find

2 =
D

2
eik3L

[
e−κL

(
1 +

Z2

Z3

)(
1 +

Z1

Z2

)
+ eκL

(
1− Z2

Z3

)(
1− Z1

Z2

)]
. (53)

We now have an equation for the transmission amplitude D in terms of the various
impedances and κL. It remains to simplify it.

A good case to consider is Z1 = Z3. This happens when we have a potential barrier
between two regions both at the same potential. In this case the brackets in the above
expression evaluate to (

1± Z2

Z1

)(
1± Z1

Z2

)
= 2± Z2

2 + Z2
1

Z1Z2
(54)

so now (53) gives

2 = DeikL
[
2 coshκL+

Z2
2 + Z2

1

Z1Z2
sinhκL

]
(55)

where k = k3 = k1. Therefore

D = e−ikL

[
coshκL+

Z2
2 + Z2

1

2Z1Z2
sinhκL

]−1

(56)

Now let’s replace the impedances by their expressions in terms of wavevectors for the case
of de Broglie waves:

Z1 = 1/h̄k, (57)

Z2 = i/h̄κ (58)

so

D = e−ikL

[
coshκL+ i

κ2 − k2

2κk
sinhκL

]−1

(59)

and therefore

|D|2 =

cosh2 κL+

(
κ2 − k2

2κk

)2

sinh2 κL

−1

(60)

Now using cosh2 κL = 1+ sinh2 κL, the expression can be written in the convenient form

|D|2 = 1

1 + γ2 sinh2 κL
(61)

where

γ =
κ2 + k2

2κk
(62)

=
V2

2
√
(V2 − E)E

. (63)
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Equation (61) is an example of quantum tunnelling. The behaviour is called ‘tunnelling’
because we may picture the potential barrier as a kind of ‘hill’. On a particle model, we
might say that the particles do not have enough energy to climb up and over the hill,
because E < V2, so we should expect them to be fully reflected. They are not: |D|2 ̸= 0
so there is a non-zero flux on the right of the barrier, and we might say therefore that the
particles have ‘tunnelled through’ the hill. This is an interesting phenomenon, but one
should not exaggerate its difference from classical physics, because the difference depends
on whether you adopt a particle picture or a wave picture for the physical entities in
question. In fact things like electrons are quantum things, so one may equally well say
they are waves as say they are particles. As soon as one admits they are waves, the
tunnelling phenomenon is no longer so surprising, because it is exactly what one should
expect waves to do. The very same behaviour is indeed seen in the propagation of classical
electromagnetic waves in the phenomenon of frustrated total internal reflection.

Quantum tunnelling happens with non-negligible probability as long as γ sinhκL is
not too large. This requires that the barrier is neither too high nor too wide. For κL≫ 1
one can approximate sinhκL ≃ eκL/2 and then

|D|2 ≃ 4

γ2
e−2κL. (64)

Hence the tunnelling probability depends exponentially on the width of the barrier in the
limit of a wide barrier. This exponential dependence makes the tunnelling a sensitive
indicator of L. The scanning tunnelling microscope makes use of this to determine the
distance between a tip and a surface through measurement of the electron tunnelling
current.

In the scanning tunnelling microscope the region inside the potential barrier is a region
of space that is empty apart from an electric field which provides the potential energy ‘hill’
for the electrons. Another example occurs in radioactive beta decay, where the strong
nuclear force acts to provide a potential energy barrier to the escaping alpha particle.

A cautionary note. You will find on the internet, and sometimes in textbooks, dubious
statements along the lines that ordinary objects could in principle pass through walls by
quantum tunnelling. In fact the situation with a wall (i.e. a solid object made of atoms)
is complicated by the fact that it is not empty space but full of electrons. This makes
it hard for other electrons to pass through, owing to the Pauli Exclusion Principle which
says (roughly) that two electrons can’t occupy the same region of space if they have the
same spin state and the same momentum. This Exclusion Principle is not owing to any
potential energy consideration, but to an interferometric multi-electron effect which is
not accounted for by the simple theory we have presented here. When thinking about
quantum tunnelling it is better to restrict your thinking to simpler situations where you
can be confident that you have taken everything into account. Better examples occur in
the motion of electrons inside crystalline solids, and in the physics of atomic collisions,
where it can happen that two atoms have to overcome a potential barrier in order to
approach closely.
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4.1 Alternative derivation

When the situation in region 2 is as given in eqn (45), we find

C =
β + r

1 + βr
(65)

as in eqn (38), where now (using (39), (57))

β =
ik − κ

ik + κ
, (66)

r = e2κL
Z3 − Z2

Z3 + Z2
. (67)

Taking the case Z1 = Z3 gives r = −e2κLβ and therefore

C =
β(1− e2κL)

1− β2e2κL
=
β(e−κL − eκL)

e−κL − β2eκL
. (68)

Now using

eκL = coshκL+ sinhκL (69)

e−κL = coshκL− sinhκL (70)

we have

C =
2β sinhκL

(β2 − 1) coshκL+ (β2 + 1) sinhκL
(71)

and (66) gives

β +
1

β
=

2(κ2 − k2)

κ2 + k2
, (72)

β − 1

β
=

4iκk

κ2 + k2
. (73)

Substituting these results into (71) yields

C =
sinhκL

2iκk
κ2+k2

coshκL+ κ2−k2

κ2+k2
sinhκL

(74)

which we shall write

C =
−iγ sinhκL

coshκL+ κ2−k2

2iκk sinhκL
(75)

where γ is as given by eqn (62). Therefore

|C|2 = γ2 sinh2 κL

cosh2 κL+ (κ2−k2)2

4κ2k2
sinh2 κL

=
γ2 sinh2 κL

1 + γ2 sinh2 κL
(76)

where the last step used cosh2 κL = 1 + sinh2 κL. Eqn (61) follows immediately.

Exercise
Show that (44) and (61) amount to the same result, under the substitution ik2 = κ, if one
‘reads’ the factor in the denominator of (44) as 2|β/(1− β2)|2.
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