Thermodynamics lecture 9.

1. Wien's laws:

- 1. Wien's displacement law
- 2. Wien's distribution law
- 2. Statistical mechanics of cavity radiation, Model 1: distinguishable modes (plane waves)
- 3. Energy, partition function, etc.
- 4. Model 2: indistinguishable photons (conceptually harder but equally important)

scaled by λ_T^3

 $\lambda_T = 2\pi \hbar c / k_{\rm B} T.$

Slow expansion of cavity radiation in a reflecting cavity: does it remain in thermal equilibrium state?

Wien's argument to show the answer is *yes*:

Stages (a), (c) and (e) :

Come to equil (at some temperature or other) with no net ΔU

Stages (b) and (d):

Adiabatic change of volume (so work is done and U changes and changes back)

Modes of electromagnetic field

Standing waves in a box

 $\sin(k_x x) \sin(k_y y) \sin(k_z z)$

 $\Delta k_x = \frac{\pi}{T}$

OR travelling waves with a *mathematical constraint*: must have period L.

Travelling waves, $e^{ik_x x} e^{ik_y y} e^{ik_z z}$

 $\Delta k_x = \frac{2\pi}{L}$

Comparison between cavity radiation and an ideal gas

						5. C			
	Ideal gas			Cavity radiation					
	U, N, V		U,V						
N			Ν	=	bVT^3				
\mathcal{P}	=	$nk_{\rm B}T$	Р	=	$0.9 nk_{\rm B} T$				
U	=	$\frac{1}{\gamma-1}Nk_{\rm B}T$	U	=	$2.7Nk_{\rm B}T$,				
р	=	$(\gamma - 1)u$	Р	=	$\frac{1}{3}u$				
S	=	$Nk_{\rm B}\left(\ln\left[a\frac{T^{1/(\gamma-1)}}{n}\right]\right)$	S	=	$3.6Nk_{\rm B}$				
	=	$\frac{U}{T}\left(\ln T - (\gamma - 1)\ln(n/a)\right)$		=	$\frac{4}{3}\frac{U}{T}$				
μ	=	(U - TS + pV)/N	μ	=	0	$b \simeq$	$2.03 \times$	$10^{7} {\rm m}^{-}$	${}^{3}K^{-3}$
	=	$(\gamma u - Ts)/n$							••