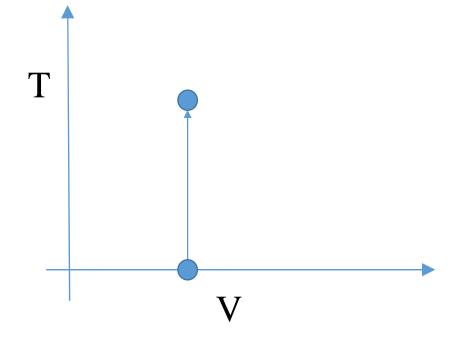
Thermodynamics lecture 6.

W.A.L.T.


- Introduce chemical potential
- Euler relation, Gibbs-Duhem relation
- Thermodynamic potentials
- Maxwell relations
- Applications
- Natural variables

Total (also called absolute) entropy

$$S(T_{\rm f}) - S(0) = \int_0^{T_{\rm f}} \frac{dQ_{\rm rev}}{T}$$

Total (also called absolute) entropy

$$S(T_{\rm f}) - S(0) = \int_0^{T_{\rm f}} \frac{dQ_{\rm rev}}{T}$$

$$S(V, T_{\rm f}) = \int_0^{T_{\rm f}} \frac{C_V(V, T)}{T} dT + \sum_i \frac{L_i}{T_i}$$

(assuming S(V,0) = 0)

internal energy
$$U$$

enthalpy
$$H = U + pV$$

Helmholtz function F = U - TS

Gibbs function
$$G = U + pV - TS$$

$$\tilde{U} = U - \mu N$$

$$\tilde{H} = H - \mu N$$

Grand potential $\Omega = F - \mu N$

$$G - \mu N = 0$$

$$dU = TdS - pdV + \mu dN$$

$$dH = TdS + Vdp + \mu dN$$

$$dF = -SdT - pdV + \mu dN$$

$$dG = -SdT + Vdp + \mu dN$$

$$d\tilde{U} = TdS - pdV - Nd\mu$$

$$d\tilde{H} = TdS + Vdp - Nd\mu$$

$$d\Omega = -SdT - pdV - Nd\mu$$

Function	Significance	Natural variables	Maxwell relation
U	Energy content	S, V, N	$\frac{\partial T}{\partial V}\Big _{S} = -\left. \frac{\partial p}{\partial S} \right _{V}$
F	Effective potential energy for system at fixed T	T, V, N	$\left. \frac{\partial \mathcal{S}}{\partial V} \right _T = \left. \frac{\partial \mathcal{P}}{\partial T} \right _V$
H	Related to energy changes at fixed pressure $\Delta H =$ process energy, latent heat, heat of reaction	S, p, N	$\left. \frac{\partial T}{\partial p} \right _{S} = \left. \frac{\partial V}{\partial S} \right _{p}$
G	Determines direction of phase and chemical changes	T, p, N	$-\left.\frac{\partial S}{\partial p}\right _{T} = \left.\frac{\partial V}{\partial T}\right _{p}$
Ω	Useful in general study of open systems	T, V, μ	