Thermodynamics lecture 4.

W.A.L.T.

- Carnot cycle
- Clausius and Kelvin statements imply one another
- Carnot's theorem: efficiency of reversible heat engines
- The definition of absolute temperature
- Clausius' theorem
- \rightarrow ENTROPY!

 Thermal contact between the container and hot reservoir; allow the fluid to expand.

2. Thermally isolate the fluid and have it expand some more (so the fluid cools down).

3. Contact the container with a cold reservoir and compress the fluid (the reservoir keeps it cool).

4. Thermally isolatethe fluid and compressit some more (so itgets hotter).

We can run the same cycle in reverse:

Heat pump

E.g.

- Refrigerator
- Air conditioning unit

Any type of system can have a Carnot cycle:

Solid / liquid / gas Magnetic Electric Soap film

Etc.

Carnot cycle:

2 adiabatic and2 isothermal stages

Proving that the Kelvin and Clausius statements of the Second Law imply one another.

Clausius statement:

No process is possible whose sole effect is the transfer of heat from a colder to a hotter body.

Kelvin statement:

No process is possible whose sole effect is to extract heat from a single reservoir and convert it into an equivalent amount of work.

Proving that the Kelvin and Clausius statements of the Second Law imply one another.

- Clausius statement of the 2nd Law says the net result here is physically impossible
- But we know the Carnot cycle is possible
- So the engine K must be impossible
- ... Which is the Kelvin statement of the 2nd Law

Proving that the Kelvin and Clausius statements of the Second Law imply one another.

- Kelvin statement of the 2nd Law says the net result here is physically impossible
- But we know the Carnot cycle is possible
- So the engine C must be impossible
- ... Which is the Clausius statement of the 2nd Law

Definition of efficiency of a heat engine

Carnot's theorem

All reversible heat engines operating between given temperatures are equally efficient, and more efficient that non-reversible ones, no matter what the engines' internal construction or physical parameters may be (whether pressure, or magnetic fields, or whatever).

Definition of absolute temperature

Body in some arbitrary equilibrium state

A standard system in some chosen reference state (we pick pure water, ice, steam in mutual equilibrium; this is called the triple point of water). Assign it some chosen temperature T_0 (e.g. 273.16 units)

Definition of absolute temperature

Ratio of heats for a reversible engine

Hot heat is more valuable than cold heat

Heat energy delivered by a system at high temperature is more valuable (can be used to drive a greater variety of processes) than the same amount of heat at low temperature.

Next: Clausius' theorem

(Kelvin statement)

Clausius' theorem, first part

For any cycle: $\oint \frac{1}{T} dQ \le 0.$

Clausius' theorem, in full:

Clausius's theorem The integral $\oint dQ/T \le 0$ for any closed cycle, where equality holds if and only if the cycle is reversible.

Definition of ENTROPY

A function of state, applicable to ANY thermodynamic system, whose value changes by

$$\mathrm{d}S = \frac{\mathrm{d}Q_R}{T}$$

when heat dQ_R passes into the system by a reversible heat transfer.

Fundamental relation for a closed system dU = TdS - pdV

{heat engine, second law} \rightarrow Carnot theorem: $\eta \leq \eta_R$

 \rightarrow absolute temperature :

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}.$$

{heat ratio, Kelvin statement} \rightarrow Clausius theorem:

$$\begin{cases} \oint \frac{dQ}{T} \le 0 \\ \oint \frac{dQ_R}{T} = 0 \\ \Rightarrow \exists \text{ entropy!, } dS = \frac{dQ_R}{T} \end{cases}$$

Fundamental relation for a closed system

$$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$$